Tag標(biāo)簽
  • 自媒體數(shù)據(jù)挖掘智能
    自媒體數(shù)據(jù)挖掘智能

    企業(yè)的目標(biāo)是提高效率。知道是一回事,會做又是另一回事,真正去做的都成了明星企業(yè)。比如百度提升了用戶獲取信息的效率,美團(tuán)外賣提升了用戶購買一日三餐的效率,微信等即時通訊提升了用戶溝通的效率……同樣的邏輯也適用于物流行業(yè),行業(yè)內(nèi)所有企業(yè)都在挑戰(zhàn)中前行,過去有雙碳目標(biāo)的要求,未來有運營高成本的現(xiàn)實。前幾年給運輸物流裝備行業(yè)帶來不少困難,有一家地面鐵路公司旨在解決這個問題。2015年起,開始為新能源物流車全價值鏈提供一站式服務(wù)和解決方案。環(huán)保低碳貨運進(jìn)入新能源物流車市場,為大型快遞物流企業(yè)、城市配送企業(yè)提供租賃、銷售及運營配套服務(wù),成為重用型公司新能源物流車服務(wù)商運營。對于城市配送物流企業(yè)來說,車輛的...

  • 在線數(shù)據(jù)挖掘系統(tǒng)
    在線數(shù)據(jù)挖掘系統(tǒng)

    所以對人的要求就是要熟悉挖礦的方法和工具,或者至少知道在什么平臺上使用什么工具,解決什么需求。簡單的說就是負(fù)責(zé)拿到需求,然后拿到結(jié)果。大多數(shù)公司的數(shù)據(jù)挖掘工程師都比較被動。比如BI讓你說“我要獲取10年的銷售,需要知道每年的銷售情況和訂單情況”。這時候你需要對數(shù)據(jù)進(jìn)行采集、處理和整理、展示結(jié)果等,主要集中在算法上。數(shù)據(jù)挖掘就是通過數(shù)據(jù)的表象發(fā)現(xiàn)隱藏的蛛絲馬跡,找出看似無關(guān)事物背后隱藏的規(guī)律和聯(lián)系,并以此來理解或預(yù)測未知事物。很多人認(rèn)為數(shù)據(jù)挖掘需要掌握復(fù)雜高級的算法和技術(shù)開發(fā)才能擅長數(shù)據(jù)挖掘和分析,其實不然。在企業(yè)的實際運作中,比較好的大數(shù)據(jù)挖掘工程師應(yīng)該是熟悉和了解業(yè)務(wù)的人?;跁r序預(yù)測引擎,...

  • 線上零售數(shù)據(jù)挖掘產(chǎn)品
    線上零售數(shù)據(jù)挖掘產(chǎn)品

    然后針對不同價格區(qū)間的汽車銷量與相應(yīng)合成指數(shù)進(jìn)行建模預(yù)測且平均***誤差百分?jǐn)?shù)均不超過4%,但是同一價格區(qū)間內(nèi)包含眾多不同品牌車型,預(yù)測結(jié)果無法提供有價值的決策支持;文獻(xiàn)[6]、文獻(xiàn)[7]針對大眾途觀和寶馬汽車銷量進(jìn)行預(yù)測研究,通過人工方式進(jìn)行網(wǎng)絡(luò)數(shù)據(jù)關(guān)鍵詞的選取,發(fā)現(xiàn)加入百度關(guān)鍵詞作為解釋變量的模型相比傳統(tǒng)的ARMA模型,預(yù)測精度有了一定程度的提高;文獻(xiàn)[8]利用經(jīng)濟(jì)變量和谷歌在線搜索數(shù)據(jù)建立預(yù)測月度汽車**的多變量模型,結(jié)果表明包括谷歌搜索數(shù)據(jù)在內(nèi)的模型在統(tǒng)計上超過了大多數(shù)預(yù)測領(lǐng)域的傳統(tǒng)模型;文獻(xiàn)[9]提出了一種搜索數(shù)據(jù)關(guān)鍵特征選取方法,但是該選取方法**終**保留了相關(guān)性**高的...

  • 自媒體數(shù)據(jù)挖掘銷售
    自媒體數(shù)據(jù)挖掘銷售

    數(shù)據(jù)挖掘,又稱數(shù)據(jù)庫中的知識發(fā)現(xiàn),是人工智能和數(shù)據(jù)庫研究的熱點,所謂數(shù)據(jù)挖掘是指用常用的分析技術(shù)從大量數(shù)據(jù)中揭示隱藏的、以前未知的、具有潛在價值的信息數(shù)據(jù)挖掘使用數(shù)據(jù)挖掘主要包括分類、回歸分析、聚類、關(guān)聯(lián)規(guī)則、特征、變化和方差分析、網(wǎng)頁挖掘等,它們從不同的角度提取數(shù)據(jù)。首先簡單介紹一下什么是數(shù)據(jù)挖掘。數(shù)據(jù)挖掘是指從大量數(shù)據(jù)中發(fā)現(xiàn)特定信息和模式的過程,很多人將此過程視為知識發(fā)現(xiàn)。數(shù)據(jù)挖掘中常用的算法包括回歸、分類、聚類和模式檢測。在工程中,數(shù)據(jù)挖掘通常與大數(shù)據(jù)技術(shù)聯(lián)系在一起。在行業(yè)實踐中,從業(yè)者還必須對數(shù)據(jù)中包含的主題領(lǐng)域有合理的理解。行業(yè)分析方法常用于用戶畫像、商業(yè)智能、社區(qū)發(fā)現(xiàn)等場景。數(shù)據(jù)挖...

  • 經(jīng)濟(jì)數(shù)據(jù)挖掘工程師
    經(jīng)濟(jì)數(shù)據(jù)挖掘工程師

    數(shù)據(jù)挖掘是一種利用大數(shù)據(jù)技術(shù)來發(fā)現(xiàn)隱藏在數(shù)據(jù)背后的有價值信息的方法。它可以幫助企業(yè)更好地了解市場和客戶需求,優(yōu)化產(chǎn)品和服務(wù),提高競爭力。在當(dāng)今信息化時代,數(shù)據(jù)挖掘已經(jīng)成為了企業(yè)發(fā)展的重要手段。通過對海量數(shù)據(jù)的分析和挖掘,企業(yè)可以更好地了解市場和客戶需求,優(yōu)化產(chǎn)品和服務(wù),提高競爭力。數(shù)據(jù)挖掘技術(shù)可以幫助企業(yè)發(fā)現(xiàn)潛在的客戶群體,預(yù)測市場趨勢,提高銷售額和利潤率。數(shù)據(jù)挖掘技術(shù)的應(yīng)用范圍非常,包括金融、醫(yī)療、電商、物流等多個領(lǐng)域。在金融領(lǐng)域,數(shù)據(jù)挖掘可以幫助銀行和保險公司識別風(fēng)險,預(yù)測市場趨勢,提高投資收益。很多報表工具只能統(tǒng)計、聚合、切片、下鉆、大屏等,看似很炫,其實挖得很淺,無法應(yīng)對深度需求。經(jīng)濟(jì)...

  • 自動數(shù)據(jù)挖掘挖掘
    自動數(shù)據(jù)挖掘挖掘

    數(shù)據(jù)挖掘是一種通過分析大量數(shù)據(jù)來發(fā)現(xiàn)有用信息的技術(shù)。它可以幫助企業(yè)在競爭激烈的市場中獲得優(yōu)勢,提高效率和利潤。作為一家專注于數(shù)據(jù)挖掘的公司,我們致力于為客戶提供比較好質(zhì)的數(shù)據(jù)挖掘服務(wù)。我們的數(shù)據(jù)挖掘技術(shù)可以幫助客戶發(fā)現(xiàn)隱藏在數(shù)據(jù)中的有用信息,包括市場趨勢、消費者行為、競爭對手策略等。我們的數(shù)據(jù)挖掘工具可以處理各種類型的數(shù)據(jù),包括結(jié)構(gòu)化數(shù)據(jù)、非結(jié)構(gòu)化數(shù)據(jù)、文本數(shù)據(jù)、圖像數(shù)據(jù)等。我們的數(shù)據(jù)挖掘服務(wù)可以幫助客戶實現(xiàn)以下目標(biāo):1.提高市場競爭力:通過分析市場趨勢和競爭對手策略,客戶可以制定更有效的營銷策略,提高市場競爭力。2.提高效率和利潤:通過分析客戶的業(yè)務(wù)數(shù)據(jù),客戶可以發(fā)現(xiàn)業(yè)務(wù)流程中的瓶頸和低效點...

  • 金融數(shù)據(jù)挖掘常見問題
    金融數(shù)據(jù)挖掘常見問題

    在數(shù)據(jù)挖掘過程中,我們需要遵守數(shù)據(jù)保護(hù)法律法規(guī),保護(hù)用戶的隱私;同時,我們也需要保證算法的可解釋性,讓用戶能夠理解算法的決策過程;重要的是,我們需要保證模型的可靠性,避免因為數(shù)據(jù)偏差或算法錯誤導(dǎo)致的誤判。數(shù)據(jù)挖掘是一項非常有前景的技術(shù),它可以幫助我們更好地理解數(shù)據(jù)、優(yōu)化決策、提高效率。在未來,數(shù)據(jù)挖掘?qū)絹碓降貞?yīng)用于各個領(lǐng)域,成為推動社會發(fā)展的重要力量??傊?,數(shù)據(jù)挖掘是一項非常重要的技術(shù),它可以幫助我們更好地利用數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的價值,優(yōu)化決策,提高效率。我們需要不斷地學(xué)習(xí)和探索,不斷地完善算法和模型,讓數(shù)據(jù)挖掘技術(shù)更好地服務(wù)于人類社會的發(fā)展。使用時序預(yù)測引擎,幫您預(yù)測未來。金融數(shù)據(jù)挖掘常見...

  • 咨詢數(shù)據(jù)挖掘常見問題
    咨詢數(shù)據(jù)挖掘常見問題

    然后圍繞選取的初始關(guān)鍵詞綜合使用了長尾關(guān)鍵詞拓展法、站長工具以及網(wǎng)頁相關(guān)搜索推薦等方法拓展出數(shù)量更多的關(guān)鍵詞,剔除重復(fù)或者有歧義的關(guān)鍵詞后建立了一個包含276個關(guān)鍵詞的初始詞庫。關(guān)鍵詞搜索指數(shù)相關(guān)性分析首先利用網(wǎng)絡(luò)爬蟲工具獲取初始詞庫中各關(guān)鍵詞相同時間段內(nèi)月度搜索數(shù)據(jù),針對關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行預(yù)處理(剔除缺失數(shù)據(jù)超過6個月或者搜索指數(shù)過低的關(guān)鍵詞數(shù)據(jù)),**后得到118個符合要求的關(guān)鍵詞搜索數(shù)據(jù)。但是并不是每個關(guān)鍵詞搜索數(shù)據(jù)都與實際銷量存在相關(guān)關(guān)系。所以本文首先應(yīng)用傳統(tǒng)相關(guān)性分析方法通過判定各個關(guān)鍵詞搜索數(shù)據(jù)與大眾品牌汽車銷量的Spearman秩相關(guān)系數(shù),篩選出相關(guān)系數(shù)大于(***相關(guān))...

  • 新型數(shù)據(jù)挖掘常用知識
    新型數(shù)據(jù)挖掘常用知識

    也是很多創(chuàng)業(yè)公司遇到的較為棘手的問題。在早期團(tuán)隊資金有限的情況下,如何更好地提升用戶體驗?如果給用戶的推薦千篇一律、沒有亮點,會使得用戶在一開始就對產(chǎn)品失去了興趣,放棄使用。所以冷啟動的問題需要上線新產(chǎn)品認(rèn)真地對待和研究。在產(chǎn)品剛剛上線,新用戶到來的時候,如果沒有他在應(yīng)用上的行為數(shù)據(jù),也無法預(yù)測其興趣。另外,當(dāng)新商品上架也會遇到冷啟動的問題,沒有收集到任何一個用戶對其瀏覽,點擊或者購買的行為,也無從判斷將商品如何進(jìn)行推薦。所以在冷啟動的時候要同時考慮用戶的冷啟動和物品的冷啟動。我總結(jié)了并延伸了項亮在《推薦系統(tǒng)實踐》中的一些方法,可以參考:a.提供熱門內(nèi)容,類似剛才所介紹的熱度算法,將熱...

  • 智能數(shù)據(jù)挖掘收費
    智能數(shù)據(jù)挖掘收費

    注:這里的CF=collaborativefiltering而這兩種類型的協(xié)同過濾都是要基于用戶行為來進(jìn)行。而除了協(xié)同過濾之外,還有基于內(nèi)容的推薦、基于知識的推薦、混合推薦等方式。物以類聚,人以群分。這句話很好地解釋了協(xié)同過濾這種方法的思想。亞馬遜網(wǎng)站上對圖書的推薦-基于Item-CF前一陣參加pmcaff的人工智能產(chǎn)品經(jīng)理的活動,主講人香港中文大學(xué)的湯曉鷗教授(目前人工智能視覺方面的前列**)說,目前機(jī)器視覺領(lǐng)域可以通過社交網(wǎng)絡(luò)照片或者個人相冊中的圖片的學(xué)習(xí),可以做到預(yù)測個人征信。與誰的合影,在什么地方拍照都成為了機(jī)器預(yù)測個人特征的判斷因素。這也是利用了“人以群分"的常識,只是加上了...

  • 線上零售數(shù)據(jù)挖掘怎么樣
    線上零售數(shù)據(jù)挖掘怎么樣

    1.準(zhǔn)備數(shù)據(jù):這是構(gòu)建模型之前的之后一個數(shù)據(jù)準(zhǔn)備步驟。這一步可以分為四個部分:變量的選擇、記錄的選擇、新變量的創(chuàng)建、變量的轉(zhuǎn)換。2.建立模型:模型構(gòu)建是一個迭代過程。您需要仔細(xì)研究各種模型,以確定哪種模型對解決特定業(yè)務(wù)問題有用。部分?jǐn)?shù)據(jù)用于構(gòu)建模型,其余數(shù)據(jù)用于測試和驗證生成的模型。有時還有第三組數(shù)據(jù),稱為驗證集,因為測試聚會受到模型特性的影響,需要一個單獨的數(shù)據(jù)集來檢驗?zāi)P偷臏?zhǔn)確性。要訓(xùn)練和測試數(shù)據(jù)挖掘模型,您需要將數(shù)據(jù)至少分成兩部分,一部分用于訓(xùn)練模型,另一部分用于測試模型。3.評價模型:建立模型后,需要對得到的結(jié)果進(jìn)行評價,解釋模型的價值。測試集的準(zhǔn)確性只對用于構(gòu)建模型的數(shù)據(jù)有影響。...

  • 數(shù)據(jù)挖掘營銷轉(zhuǎn)化漏斗
    數(shù)據(jù)挖掘營銷轉(zhuǎn)化漏斗

    數(shù)據(jù)挖掘在能源行業(yè)的應(yīng)用:能源行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過對能源消耗記錄、能源生產(chǎn)效率等數(shù)據(jù)進(jìn)行分析,可以幫助能源企業(yè)更好地了解能源消耗情況,提高能源利用效率,優(yōu)化能源生產(chǎn)方案等。同時,數(shù)據(jù)挖掘還可以幫助能源企業(yè)預(yù)測市場需求,提高能源供應(yīng)管理能力。數(shù)據(jù)挖掘在社交媒體行業(yè)的應(yīng)用:社交媒體行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過對用戶行為、社交關(guān)系等數(shù)據(jù)進(jìn)行分析,可以幫助社交媒體平臺更好地了解用戶需求,提高用戶體驗,優(yōu)化廣告投放等。同時,數(shù)據(jù)挖掘還可以幫助社交媒體平臺預(yù)測用戶趨勢,提高社交媒體管理能力?;谂晾弁袃r值分析器,立即識別微不足道的大多數(shù)和至關(guān)重要的極少數(shù)。數(shù)據(jù)挖掘營銷轉(zhuǎn)...

  • 物流數(shù)據(jù)挖掘哪幾種
    物流數(shù)據(jù)挖掘哪幾種

    在構(gòu)建手機(jī)銀行的功能集時,我們需要采用對象視角。例如,在手機(jī)銀行的營銷響應(yīng)模型中,手機(jī)銀行的特征應(yīng)該反映對象的成本收益變量。比如年齡反映了使用手機(jī)銀行和去實體渠道的成本。當(dāng)建模者意識到標(biāo)簽是主觀的,他會對標(biāo)簽的選擇更加慎重;只有認(rèn)識到進(jìn)入模具的特征來自于對象,才能從對象的角度更高效地構(gòu)建特征集。首先我們來總結(jié)一下機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘的定義:數(shù)據(jù)挖掘是指通過算法從大量不完整的、有噪聲的、模糊的、隨機(jī)的數(shù)據(jù)中尋找隱藏信息的過程。換句話說,數(shù)據(jù)挖掘試圖從海量數(shù)據(jù)中找到有用的信息。使用帕累托價值分析器,立即識別微不足道的大多數(shù)和至關(guān)重要的極少數(shù)。物流數(shù)據(jù)挖掘哪幾種 177.[10]趙東波.線性回歸...

  • 傳統(tǒng)零售數(shù)據(jù)挖掘智能獲客
    傳統(tǒng)零售數(shù)據(jù)挖掘智能獲客

    如何使用數(shù)據(jù)挖掘來判斷足球隊中關(guān)鍵人物的角色,即球星。團(tuán)隊合作是許多人類活動的基本方面,從商業(yè)到藝術(shù),從體育到科學(xué)。近的研究表明,團(tuán)隊合作對于前沿科學(xué)研究至關(guān)重要,但人們對此知之甚少。團(tuán)隊合作如何激發(fā)更大的創(chuàng)造力。事實上,對于很多團(tuán)隊行動來說,并沒有一個準(zhǔn)確的方法來計算如何在玩家之間分配信任。在數(shù)學(xué)中,極坐標(biāo)系是一個二維坐標(biāo)系。在這個坐標(biāo)系中的任何位置都可以用夾角和與原極點的距離來表示。極坐標(biāo)用于的領(lǐng)域,包括數(shù)學(xué)、物理、工程、導(dǎo)航、航空和機(jī)器人技術(shù)。當(dāng)兩點之間的關(guān)系很容易用它們之間的角度和距離表示時,極坐標(biāo)系特別有用,而在平面直角坐標(biāo)系中,這種關(guān)系只能用三角函數(shù)表示。對于許多類型的曲線,極坐標(biāo)...

  • 新零售數(shù)據(jù)挖掘常見問題
    新零售數(shù)據(jù)挖掘常見問題

    然后圍繞選取的初始關(guān)鍵詞綜合使用了長尾關(guān)鍵詞拓展法、站長工具以及網(wǎng)頁相關(guān)搜索推薦等方法拓展出數(shù)量更多的關(guān)鍵詞,剔除重復(fù)或者有歧義的關(guān)鍵詞后建立了一個包含276個關(guān)鍵詞的初始詞庫。關(guān)鍵詞搜索指數(shù)相關(guān)性分析首先利用網(wǎng)絡(luò)爬蟲工具獲取初始詞庫中各關(guān)鍵詞相同時間段內(nèi)月度搜索數(shù)據(jù),針對關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行預(yù)處理(剔除缺失數(shù)據(jù)超過6個月或者搜索指數(shù)過低的關(guān)鍵詞數(shù)據(jù)),**后得到118個符合要求的關(guān)鍵詞搜索數(shù)據(jù)。但是并不是每個關(guān)鍵詞搜索數(shù)據(jù)都與實際銷量存在相關(guān)關(guān)系。所以本文首先應(yīng)用傳統(tǒng)相關(guān)性分析方法通過判定各個關(guān)鍵詞搜索數(shù)據(jù)與大眾品牌汽車銷量的Spearman秩相關(guān)系數(shù),篩選出相關(guān)系數(shù)大于(***相關(guān))...

  • 個性化數(shù)據(jù)挖掘團(tuán)隊
    個性化數(shù)據(jù)挖掘團(tuán)隊

    在醫(yī)療領(lǐng)域,數(shù)據(jù)挖掘可以幫助醫(yī)院和醫(yī)生更好地了解患者病情,提高診斷準(zhǔn)確率和效果。在電商領(lǐng)域,數(shù)據(jù)挖掘可以幫助企業(yè)了解客戶需求,優(yōu)化產(chǎn)品和服務(wù),提高銷售額和客戶滿意度。在物流領(lǐng)域,數(shù)據(jù)挖掘可以幫助企業(yè)優(yōu)化物流路線,提高配送效率和準(zhǔn)確率。數(shù)據(jù)挖掘技術(shù)的發(fā)展也帶來了一些挑戰(zhàn)和問題。首先,數(shù)據(jù)挖掘需要大量的數(shù)據(jù)支持,但是數(shù)據(jù)的質(zhì)量和完整性往往難以保證。其次,數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和人才支持,但是這方面的人才短缺。,數(shù)據(jù)挖掘需要遵守相關(guān)的法律和規(guī)定,保護(hù)用戶隱私和數(shù)據(jù)安全??傊?,數(shù)據(jù)挖掘是一種非常有前途的技術(shù),可以幫助企業(yè)更好地了解市場和客戶需求,優(yōu)化產(chǎn)品和服務(wù),提高競爭力。隨著大數(shù)據(jù)技術(shù)的不斷發(fā)展和完...

  • 自媒體數(shù)據(jù)挖掘智能獲客
    自媒體數(shù)據(jù)挖掘智能獲客

    某外賣app需要根據(jù)早中晚人們的用餐習(xí)慣來給用戶推送不一樣的食物或者優(yōu)惠券,這樣推薦不同的食物更符合用戶的習(xí)慣。另外根據(jù)地點的上下文說的是,如果你在辦公室用某外賣app點一份外賣,那么推薦給你的外賣餐廳是要離你較近的,而不是推送十公里以外的餐廳。基于內(nèi)容的推薦與熱度算法我們要知道個性化推薦一般會有兩種通用的方法,包括基于內(nèi)容的個性化推薦,和基于用戶行為的個性化推薦。基于用戶行為的推薦,會有基于物品的協(xié)同過濾(Item-CF)與基于用戶的協(xié)同過濾(User-CF)兩種。而協(xié)同過濾往往都是要建立在大量的用戶行為數(shù)據(jù)的基礎(chǔ)上,在產(chǎn)品發(fā)布之初,沒有那么大量的數(shù)據(jù)。所以這個時候就要依靠基于內(nèi)容的...

  • 智能數(shù)據(jù)挖掘公司
    智能數(shù)據(jù)挖掘公司

    數(shù)據(jù)挖掘是一種基于大數(shù)據(jù)的分析技術(shù),它可以從海量數(shù)據(jù)中提取出有用的信息和知識,幫助企業(yè)做出更加明智的決策。作為一種重心產(chǎn)品,數(shù)據(jù)挖掘在市場上具有的應(yīng)用前景。首先,數(shù)據(jù)挖掘可以幫助企業(yè)進(jìn)行市場分析。通過對市場數(shù)據(jù)的挖掘,企業(yè)可以了解市場的需求和趨勢,從而更好地制定營銷策略,提高市場競爭力。其次,數(shù)據(jù)挖掘可以幫助企業(yè)進(jìn)行客戶分析。通過對客戶的數(shù)據(jù)的挖掘,企業(yè)可以了解客戶的需求和偏好,從而更好地滿足客戶需求,提高客戶滿意度。此外,數(shù)據(jù)挖掘還可以幫助企業(yè)進(jìn)行產(chǎn)品分析。通過對產(chǎn)品數(shù)據(jù)的挖掘,企業(yè)可以了解產(chǎn)品的優(yōu)缺點,從而更好地改進(jìn)產(chǎn)品,提高產(chǎn)品質(zhì)量。無論您來自什么行業(yè),數(shù)據(jù)驅(qū)動將觸手可及,幫您緊跟時代和...

  • 金融數(shù)據(jù)挖掘報表
    金融數(shù)據(jù)挖掘報表

    但是若保留所有的解釋變量,解釋變量之間也可能存在多重共線性,所以本文在相關(guān)性分析基礎(chǔ)上應(yīng)用LASSO算法來進(jìn)一步分析與選取特征[10]。基于LASSO的特征選取在高維數(shù)據(jù)變量選擇方法的研究領(lǐng)域中,Tibshirani在1996年提出普通線性模型下的LeastAbsoluteShrinkageandSelectionOperate(LASSO)算法,LASSO算法就是在損失函數(shù)后面加上懲罰項(即L1正則項),L1正則項可以約束方程的稀疏性,這種稀疏性即可應(yīng)用于特征的選擇,這種方法與傳統(tǒng)的算法相比優(yōu)點在于可以在進(jìn)行連續(xù)的變量選擇的同時進(jìn)行模型參數(shù)估計[11]。而且LASSO算法可以有效解決...

  • 新零售數(shù)據(jù)挖掘常用知識
    新零售數(shù)據(jù)挖掘常用知識

    數(shù)據(jù)挖掘是一種通過分析大量數(shù)據(jù)來發(fā)現(xiàn)隱藏在其中的有價值信息的技術(shù)。它可以幫助企業(yè)更好地了解市場趨勢、消費者需求和競爭對手動態(tài),從而制定更加科學(xué)的商業(yè)決策。我們的公司是一家專注于數(shù)據(jù)挖掘領(lǐng)域的企業(yè),我們的重心產(chǎn)品就是基于數(shù)據(jù)挖掘技術(shù)的解決方案。我們的產(chǎn)品可以幫助企業(yè)從海量數(shù)據(jù)中提取有價值的信息,為企業(yè)的決策提供有力支持。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點:1.高效性:我們的產(chǎn)品可以快速地處理大量數(shù)據(jù),提取出有價值的信息,幫助企業(yè)更快地做出決策。2.性:我們的產(chǎn)品可以根據(jù)企業(yè)的需求進(jìn)行定制,提供的數(shù)據(jù)分析結(jié)果,幫助企業(yè)更好地了解市場和消費者。3.可靠性:我們的產(chǎn)品采用先進(jìn)的數(shù)據(jù)挖掘算法和技術(shù),保證數(shù)據(jù)...

  • 時間序列數(shù)據(jù)挖掘功能
    時間序列數(shù)據(jù)挖掘功能

    我們的數(shù)據(jù)挖掘服務(wù)具有以下優(yōu)勢:1.高效性:我們的數(shù)據(jù)挖掘工具可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地發(fā)現(xiàn)有用信息,避免誤判和誤導(dǎo)。3.定制化:我們的數(shù)據(jù)挖掘服務(wù)可以根據(jù)客戶需求進(jìn)行定制化,滿足客戶不同的業(yè)務(wù)需求。4.專業(yè)性:我們的數(shù)據(jù)挖掘團(tuán)隊由專業(yè)的數(shù)據(jù)分析師和工程師組成,具有豐富的數(shù)據(jù)挖掘經(jīng)驗和技術(shù)能力。作為一家專注于數(shù)據(jù)挖掘的公司,我們致力于為客戶提供比較好質(zhì)的數(shù)據(jù)挖掘服務(wù)。如果您需要數(shù)據(jù)挖掘服務(wù),請聯(lián)系我們,我們將竭誠為您服務(wù)?;ヂ?lián)網(wǎng)、云計算、AI算法、下一代IT技術(shù)深度融合。時間序列數(shù)據(jù)挖掘功能 然后針對不同價格區(qū)間的汽車銷量與相應(yīng)合成指...

  • 新零售數(shù)據(jù)挖掘報表工具
    新零售數(shù)據(jù)挖掘報表工具

    數(shù)據(jù)挖掘是一個跨學(xué)科的產(chǎn)物,涉及統(tǒng)計學(xué)、數(shù)據(jù)庫、機(jī)器學(xué)習(xí)、人工智能和模式識別。數(shù)據(jù)挖掘方法太復(fù)雜,無法按照來源分類,不容易理解和記憶。根據(jù)其目的,數(shù)據(jù)挖掘方法分為預(yù)測和描述類:預(yù)測和監(jiān)督學(xué)習(xí)。預(yù)測分析是指用一個或多個自變量來預(yù)測因變量的值,從歷史數(shù)據(jù)中學(xué)習(xí)作為訓(xùn)練集,建立模型,然后將這個模型應(yīng)用于當(dāng)前數(shù)據(jù)來推斷結(jié)果。以客戶違約作為預(yù)測分析的研究場景,客戶是否會違約是因變量,我們可以根據(jù)客戶的性別、年齡、收入、工作經(jīng)濟(jì)狀況、歷史信用狀況等進(jìn)行預(yù)測。很多報表工具只能統(tǒng)計、聚合、切片、下鉆、大屏等,看似很炫,其實挖得很淺,無法應(yīng)對深度需求。新零售數(shù)據(jù)挖掘報表工具挖掘技術(shù)來自于機(jī)器學(xué)習(xí),但是機(jī)器學(xué)習(xí)研...

  • 在線數(shù)據(jù)挖掘預(yù)測
    在線數(shù)據(jù)挖掘預(yù)測

    數(shù)據(jù)挖掘是一項重要的技術(shù),它可以幫助企業(yè)從海量數(shù)據(jù)中挖掘出有價值的信息,為企業(yè)決策提供支持。我們公司是一家專注于數(shù)據(jù)挖掘的企業(yè),我們的重點產(chǎn)品就是數(shù)據(jù)挖掘。我們的數(shù)據(jù)挖掘技術(shù)可以幫助企業(yè)快速、準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢,從而為企業(yè)提供決策支持。我們的數(shù)據(jù)挖掘技術(shù)可以應(yīng)用于各個領(lǐng)域,包括金融、醫(yī)療、教育、電商等等。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點:1.高效性:我們的數(shù)據(jù)挖掘技術(shù)可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析的效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢,為企業(yè)提供準(zhǔn)確的決策支持。3.靈活性:我們的數(shù)據(jù)挖掘技術(shù)可以根據(jù)不同的需求進(jìn)行定制化開發(fā),滿足企...

  • 自動數(shù)據(jù)挖掘銷售
    自動數(shù)據(jù)挖掘銷售

    177.[10]趙東波.線性回歸模型中多重共線性問題的研究[D].錦州:渤海大學(xué),2017.[11]李鋒,蓋玉潔,盧一強(qiáng).測量誤差模型的自適應(yīng)LASSO變量選擇方法研究[J].中國科學(xué):數(shù)學(xué),2014,44(9):983-1006.[12]劉曉寧.基于Lasso特征選擇的方法比較[J].安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報,2014,13(1):26-30.[13]李春紅,吳英,覃朝勇.基于LASSO變量選擇方法的網(wǎng)絡(luò)廣告點擊率預(yù)測模型研究[J].數(shù)理統(tǒng)計與管理,2016,35(5):803-809.[14]郭貔,王力,郝元濤.基于LASSO回歸模型與百度搜索數(shù)據(jù)構(gòu)建的流感**預(yù)測系統(tǒng)[J]....

  • 在線數(shù)據(jù)挖掘系統(tǒng)
    在線數(shù)據(jù)挖掘系統(tǒng)

    也就是模型MAE**低時的Lambda取值,此時非零系數(shù)的變量個數(shù)*為12個,相比之**7個關(guān)鍵詞特征數(shù)據(jù)已經(jīng)大幅度地縮減。通過查看coefficients參數(shù)可以得到模型的Intercept為5479632,所選取的關(guān)鍵詞變量及其所對應(yīng)的參數(shù)估計如表1所示。至此,本文首先進(jìn)行關(guān)鍵詞的選取及拓展,然后將傳統(tǒng)相關(guān)性分析與基于LASSO的特征選擇相結(jié)合應(yīng)用于搜索數(shù)據(jù)關(guān)鍵詞選取,**終選出針對“大眾”品牌汽車的12個網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征。使用同樣的方法,篩選得出“本田”及“奧迪”品牌汽車對應(yīng)的網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征分別為12個和13個。2實驗分析與討論通過LASSO算法的應(yīng)用有效地解決了解釋變...

  • 線上數(shù)據(jù)挖掘銷售
    線上數(shù)據(jù)挖掘銷售

    然后圍繞選取的初始關(guān)鍵詞綜合使用了長尾關(guān)鍵詞拓展法、站長工具以及網(wǎng)頁相關(guān)搜索推薦等方法拓展出數(shù)量更多的關(guān)鍵詞,剔除重復(fù)或者有歧義的關(guān)鍵詞后建立了一個包含276個關(guān)鍵詞的初始詞庫。關(guān)鍵詞搜索指數(shù)相關(guān)性分析首先利用網(wǎng)絡(luò)爬蟲工具獲取初始詞庫中各關(guān)鍵詞相同時間段內(nèi)月度搜索數(shù)據(jù),針對關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行預(yù)處理(剔除缺失數(shù)據(jù)超過6個月或者搜索指數(shù)過低的關(guān)鍵詞數(shù)據(jù)),**后得到118個符合要求的關(guān)鍵詞搜索數(shù)據(jù)。但是并不是每個關(guān)鍵詞搜索數(shù)據(jù)都與實際銷量存在相關(guān)關(guān)系。所以本文首先應(yīng)用傳統(tǒng)相關(guān)性分析方法通過判定各個關(guān)鍵詞搜索數(shù)據(jù)與大眾品牌汽車銷量的Spearman秩相關(guān)系數(shù),篩選出相關(guān)系數(shù)大于(***相關(guān))...

  • 時間序列數(shù)據(jù)挖掘預(yù)測
    時間序列數(shù)據(jù)挖掘預(yù)測

    然后圍繞選取的初始關(guān)鍵詞綜合使用了長尾關(guān)鍵詞拓展法、站長工具以及網(wǎng)頁相關(guān)搜索推薦等方法拓展出數(shù)量更多的關(guān)鍵詞,剔除重復(fù)或者有歧義的關(guān)鍵詞后建立了一個包含276個關(guān)鍵詞的初始詞庫。關(guān)鍵詞搜索指數(shù)相關(guān)性分析首先利用網(wǎng)絡(luò)爬蟲工具獲取初始詞庫中各關(guān)鍵詞相同時間段內(nèi)月度搜索數(shù)據(jù),針對關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行預(yù)處理(剔除缺失數(shù)據(jù)超過6個月或者搜索指數(shù)過低的關(guān)鍵詞數(shù)據(jù)),**后得到118個符合要求的關(guān)鍵詞搜索數(shù)據(jù)。但是并不是每個關(guān)鍵詞搜索數(shù)據(jù)都與實際銷量存在相關(guān)關(guān)系。所以本文首先應(yīng)用傳統(tǒng)相關(guān)性分析方法通過判定各個關(guān)鍵詞搜索數(shù)據(jù)與大眾品牌汽車銷量的Spearman秩相關(guān)系數(shù),篩選出相關(guān)系數(shù)大于(***相關(guān))...

  • RFM數(shù)據(jù)挖掘報價
    RFM數(shù)據(jù)挖掘報價

    數(shù)據(jù)挖掘是一種通過分析大量數(shù)據(jù)來發(fā)現(xiàn)隱藏在其中的有價值信息的技術(shù)。它可以幫助企業(yè)更好地了解市場趨勢、消費者需求和競爭對手動態(tài),從而制定更加科學(xué)的商業(yè)決策。我們的公司是一家專注于數(shù)據(jù)挖掘領(lǐng)域的企業(yè),我們的重心產(chǎn)品就是基于數(shù)據(jù)挖掘技術(shù)的解決方案。我們的產(chǎn)品可以幫助企業(yè)從海量數(shù)據(jù)中提取有價值的信息,為企業(yè)的決策提供有力支持。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點:1.高效性:我們的產(chǎn)品可以快速地處理大量數(shù)據(jù),提取出有價值的信息,幫助企業(yè)更快地做出決策。2.性:我們的產(chǎn)品可以根據(jù)企業(yè)的需求進(jìn)行定制,提供的數(shù)據(jù)分析結(jié)果,幫助企業(yè)更好地了解市場和消費者。3.可靠性:我們的產(chǎn)品采用先進(jìn)的數(shù)據(jù)挖掘算法和技術(shù),保證數(shù)據(jù)...

  • 網(wǎng)店數(shù)據(jù)挖掘組件
    網(wǎng)店數(shù)據(jù)挖掘組件

    0引言近年來,我國汽車產(chǎn)銷呈現(xiàn)較快增長,產(chǎn)銷總量屢創(chuàng)歷史新高,據(jù)中國汽車工業(yè)協(xié)會統(tǒng)計數(shù)據(jù),2016年中國汽車產(chǎn)銷均超2800萬輛,連續(xù)八年蟬聯(lián)全球***[1]。據(jù)車主之家網(wǎng)站提供的數(shù)據(jù)顯示,2009~2016年我國銷量排名**的品牌汽車占比高達(dá),對于我國汽車消費者而言,品牌效應(yīng)十分***。但是汽車生產(chǎn)廠商追求規(guī)模效應(yīng)時存在一定的盲目性,導(dǎo)致產(chǎn)能過剩的問題日益凸顯。在嚴(yán)峻的形勢下,汽車生產(chǎn)企業(yè)應(yīng)認(rèn)真分析市場未來的需求量和可能存在的變化趨勢,合理規(guī)劃生產(chǎn)計劃,采用以銷定產(chǎn)的生產(chǎn)策略。因此如何準(zhǔn)確地預(yù)測銷量,對于汽車生產(chǎn)企業(yè)研究市場行情及時調(diào)整生產(chǎn)經(jīng)營策略有著極其重要的意義。隨著人工智能的出...

  • 電商數(shù)據(jù)挖掘產(chǎn)品
    電商數(shù)據(jù)挖掘產(chǎn)品

    我們的數(shù)據(jù)挖掘服務(wù)具有以下優(yōu)勢:1.高效性:我們的數(shù)據(jù)挖掘工具可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地發(fā)現(xiàn)有用信息,避免誤判和誤導(dǎo)。3.定制化:我們的數(shù)據(jù)挖掘服務(wù)可以根據(jù)客戶需求進(jìn)行定制化,滿足客戶不同的業(yè)務(wù)需求。4.專業(yè)性:我們的數(shù)據(jù)挖掘團(tuán)隊由專業(yè)的數(shù)據(jù)分析師和工程師組成,具有豐富的數(shù)據(jù)挖掘經(jīng)驗和技術(shù)能力。作為一家專注于數(shù)據(jù)挖掘的公司,我們致力于為客戶提供比較好質(zhì)的數(shù)據(jù)挖掘服務(wù)。如果您需要數(shù)據(jù)挖掘服務(wù),請聯(lián)系我們,我們將竭誠為您服務(wù)。絕大多數(shù)分析工具界面復(fù)雜、術(shù)語晦澀、操作繁瑣,十分難用?頁面友好、全模塊化、一目了然。電商數(shù)據(jù)挖掘產(chǎn)品機(jī)器學(xué)習(xí)(Mach...

1 2 3 4 5 6 7 8 ... 14 15