在線數(shù)據(jù)挖掘系統(tǒng)

來源: 發(fā)布時(shí)間:2023-05-06

所以對(duì)人的要求就是要熟悉挖礦的方法和工具,或者至少知道在什么平臺(tái)上使用什么工具,解決什么需求。簡單的說就是負(fù)責(zé)拿到需求,然后拿到結(jié)果。大多數(shù)公司的數(shù)據(jù)挖掘工程師都比較被動(dòng)。比如BI讓你說“我要獲取10年的銷售,需要知道每年的銷售情況和訂單情況”。這時(shí)候你需要對(duì)數(shù)據(jù)進(jìn)行采集、處理和整理、展示結(jié)果等,主要集中在算法上。數(shù)據(jù)挖掘就是通過數(shù)據(jù)的表象發(fā)現(xiàn)隱藏的蛛絲馬跡,找出看似無關(guān)事物背后隱藏的規(guī)律和聯(lián)系,并以此來理解或預(yù)測未知事物。很多人認(rèn)為數(shù)據(jù)挖掘需要掌握復(fù)雜高級(jí)的算法和技術(shù)開發(fā)才能擅長數(shù)據(jù)挖掘和分析,其實(shí)不然。在企業(yè)的實(shí)際運(yùn)作中,比較好的大數(shù)據(jù)挖掘工程師應(yīng)該是熟悉和了解業(yè)務(wù)的人?;跁r(shí)序預(yù)測引擎,幫您預(yù)測未來。在線數(shù)據(jù)挖掘系統(tǒng)

數(shù)據(jù)挖掘源于從數(shù)據(jù)庫中發(fā)現(xiàn)知識(shí),簡稱為KDD,這個(gè)概念先在1989年的第11屆國際聯(lián)合人工智能學(xué)術(shù)會(huì)議上被提出。為了避免混淆,F(xiàn)ayyad、Piatetsky-Shapiro和Smyth在1996年出版的一個(gè)論文集中重新定義了KDD和數(shù)據(jù)挖掘的概念并進(jìn)行了區(qū)分。數(shù)據(jù)挖掘是在可接受的計(jì)算時(shí)間內(nèi)通過特定的算法生成特定模式的一個(gè)步驟。因此,在研究領(lǐng)域一般稱為數(shù)據(jù)庫中的知識(shí)發(fā)現(xiàn),而在工程領(lǐng)域被稱為數(shù)據(jù)挖掘?,F(xiàn)在,數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)的發(fā)展水平相當(dāng)于數(shù)據(jù)庫技術(shù)在70年代的水平,在理論和方法上需要更多的指導(dǎo)和支持,才能夠更的應(yīng)用到實(shí)際中。數(shù)據(jù)挖掘可以用于描述性的挖掘任務(wù)和預(yù)測性的挖掘任務(wù)。在很多情況下,用戶并不知道哪種模式是有趣的,因此需要探索多種不同的模式以找到自己感興趣的模式。數(shù)據(jù)挖掘系統(tǒng)應(yīng)該能夠發(fā)現(xiàn)各種粒度的模式,并允許用戶進(jìn)行指導(dǎo)或聚焦搜索有趣的模式。自動(dòng)數(shù)據(jù)挖掘智能獲客使用智能擬合引擎引擎擬合影響因素并預(yù)測未知。

企業(yè)的目標(biāo)是提高效率。知道是一回事,會(huì)做又是另一回事,真正去做的都成了明星企業(yè)。比如百度提升了用戶獲取信息的效率,美團(tuán)外賣提升了用戶購買一日三餐的效率,微信等即時(shí)通訊提升了用戶溝通的效率……同樣的邏輯也適用于物流行業(yè),行業(yè)內(nèi)所有企業(yè)都在挑戰(zhàn)中前行,過去有雙碳目標(biāo)的要求,未來有運(yùn)營高成本的現(xiàn)實(shí)。前幾年給運(yùn)輸物流裝備行業(yè)帶來不少困難,有一家地面鐵路公司旨在解決這個(gè)問題。2015年起,開始為新能源物流車全價(jià)值鏈提供一站式服務(wù)和解決方案。環(huán)保低碳貨運(yùn)進(jìn)入新能源物流車市場,為大型快遞物流企業(yè)、城市配送企業(yè)提供租賃、銷售及運(yùn)營配套服務(wù),成為重用型公司新能源物流車服務(wù)商運(yùn)營。對(duì)于城市配送物流企業(yè)來說,車輛的使用和購置成本一直是需要重點(diǎn)考慮的問題,隨著市場需求的增長,地面鐵路可以為企業(yè)提供靈活充足的車輛租賃服務(wù),輔以多功能輔助車輛。服務(wù)租賃確定后,陸路鐵路還將提供一系列服務(wù),包括車輛檢測、收費(fèi)指導(dǎo)、車輛維修等,將降低城市配送物流企業(yè)在物流問題上的成本和精力投入“用車”。

描述性的,無監(jiān)督的學(xué)習(xí),描述性分析是指分析具有多種屬性的數(shù)據(jù)集,找出潛在的模式并進(jìn)行分類。描述性分析是一個(gè)無監(jiān)督的學(xué)習(xí)過程。與監(jiān)督學(xué)習(xí)不同,無監(jiān)督學(xué)習(xí)算法沒有參考指標(biāo),需要結(jié)合業(yè)務(wù)經(jīng)驗(yàn)來判斷數(shù)據(jù)分類是否正確。無監(jiān)督學(xué)習(xí)耗時(shí)長,對(duì)建模者的專業(yè)素質(zhì)要求較高。在數(shù)據(jù)挖掘建模中,定義標(biāo)簽是主題視角。比如營銷預(yù)測模型中客戶是否回復(fù),是建模者自己設(shè)定的規(guī)則。這個(gè)規(guī)則可能是在收到營銷消息后的三天內(nèi)注冊(cè)一個(gè)賬號(hào)并生成訂單。我們知道你的數(shù)據(jù)是金礦,我們絲毫不會(huì)試圖占有。

    以“大眾”為例展示各模型測試集的預(yù)測值與實(shí)際值對(duì)比如圖2所示。其中可以看出LASOO線性回歸模型(圖(b))及支持向量回歸模型(圖(c))的預(yù)測精度明顯優(yōu)于ARIMA模型(圖(a)),ARIMA模型雖然能夠預(yù)測銷量的基本趨勢,但整體預(yù)測效果比較差,而且以上三種模型的峰值敏感度都較低,即對(duì)峰值的預(yù)測誤差均比較大。通過與隨機(jī)森林模型(圖(d))進(jìn)行對(duì)比,可以清晰直觀地看出,隨機(jī)森林模型與其他模型相比在峰值預(yù)測準(zhǔn)確度上有明顯差異,顯然隨機(jī)森林模型對(duì)于峰值和整體預(yù)測的結(jié)果都更精確。由此可以得出結(jié)論,針對(duì)汽車品牌粒度的月度銷量預(yù)測問題,建立基于網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征的隨機(jī)森林模型是一種切實(shí)可行的方案。3結(jié)論本文以品牌汽車銷量為研究對(duì)象,通過關(guān)鍵詞的選取及拓展,將相關(guān)性分析與基于LASSO的特征選擇相結(jié)合,**終篩選出針對(duì)不同品牌汽車的網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征,在解決多重共線性及減少過擬合的基礎(chǔ)上保留**有效的數(shù)據(jù),然后分別建立了傳統(tǒng)時(shí)間序列模型及三種機(jī)器學(xué)習(xí)模型,通過對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析,發(fā)現(xiàn)機(jī)器學(xué)習(xí)模型的預(yù)測效果均有***優(yōu)勢,其中隨機(jī)森林模型預(yù)測性能**優(yōu)。數(shù)據(jù)挖掘還可以用于發(fā)現(xiàn)行為、異常情況和風(fēng)險(xiǎn)預(yù)警等,幫助企業(yè)保護(hù)自身利益。工業(yè)數(shù)據(jù)挖掘工程師

自動(dòng)生成干貨滿滿的富媒體分析報(bào)告。在線數(shù)據(jù)挖掘系統(tǒng)

數(shù)據(jù)挖掘依賴于(1)基于統(tǒng)計(jì)的抽樣、估計(jì)和假設(shè)檢驗(yàn)的思想;(2)基于人工智能、模式識(shí)別和機(jī)器學(xué)習(xí)的搜索算法、建模方法和學(xué)習(xí)理論。數(shù)據(jù)挖掘也迅速吸收了其他領(lǐng)域的思想,包括優(yōu)化、演化計(jì)算、信息論、信號(hào)處理、可視化和信息檢索。其他一些領(lǐng)域也發(fā)揮著重要的支撐作用。特別是,數(shù)據(jù)庫系統(tǒng)必須提供高效的存儲(chǔ)、索引和查詢處理支持。在處理海量數(shù)據(jù)集時(shí),基于高性能計(jì)算的方法通常很重要。分布式技術(shù)還可以幫助處理大量數(shù)據(jù),并且在無法集中處理數(shù)據(jù)時(shí)更為重要。數(shù)據(jù)挖掘和OLAP的區(qū)別在于,數(shù)據(jù)挖掘不是用來檢查預(yù)期的模型是否正確,而是在數(shù)據(jù)庫中查找模型本身。基本上,這是一個(gè)歸納過程。例如,使用數(shù)據(jù)挖掘工具的分析師想要找到導(dǎo)致違約的風(fēng)險(xiǎn)因素。數(shù)據(jù)挖掘工具可以幫助他發(fā)現(xiàn)高負(fù)債和低收入的影響因素,甚至可以發(fā)現(xiàn)一些分析師從未想過或嘗試過的其他因素,例如年齡。在線數(shù)據(jù)挖掘系統(tǒng)

上海暖榕智能科技有限責(zé)任公司一直專注于人工智能理論與算法軟件開發(fā),大數(shù)據(jù)服務(wù),軟件即服務(wù)(SaaS),數(shù)據(jù)分析與挖掘整體解決方案,經(jīng)營性互聯(lián)網(wǎng)文化信息服務(wù),信息系統(tǒng)集成和物聯(lián)網(wǎng)技術(shù)服務(wù),信息技術(shù)咨詢服務(wù),社會(huì)經(jīng)濟(jì)咨詢【依法須經(jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營活動(dòng)?!浚且患覕?shù)碼、電腦的企業(yè),擁有自己**的技術(shù)體系。一批專業(yè)的技術(shù)團(tuán)隊(duì),是實(shí)現(xiàn)企業(yè)戰(zhàn)略目標(biāo)的基礎(chǔ),是企業(yè)持續(xù)發(fā)展的動(dòng)力。公司業(yè)務(wù)范圍主要包括:暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等。公司奉行顧客至上、質(zhì)量為本的經(jīng)營宗旨,深受客戶好評(píng)。公司憑著雄厚的技術(shù)力量、飽滿的工作態(tài)度、扎實(shí)的工作作風(fēng)、良好的職業(yè)道德,樹立了良好的暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案形象,贏得了社會(huì)各界的信任和認(rèn)可。