個(gè)性化數(shù)據(jù)挖掘工具

來源: 發(fā)布時(shí)間:2023-04-21

我們的數(shù)據(jù)挖掘產(chǎn)品已經(jīng)成功應(yīng)用于多個(gè)企業(yè),取得了良好的效果。我們的客戶反饋非常好,他們認(rèn)為我們的數(shù)據(jù)挖掘產(chǎn)品可以幫助他們更好地了解市場(chǎng)和客戶,提高企業(yè)的競(jìng)爭力。如果您正在尋找一家專業(yè)的數(shù)據(jù)挖掘企業(yè),我們是您的的選擇。我們的數(shù)據(jù)挖掘技術(shù)可以幫助您更好地了解市場(chǎng)和客戶,提高企業(yè)的競(jìng)爭力。如果您對(duì)我們的產(chǎn)品感興趣,歡迎隨時(shí)聯(lián)系我們,我們將竭誠為您服務(wù)??傊?,我們的數(shù)據(jù)挖掘產(chǎn)品是一款高效、準(zhǔn)確、靈活、可視化的產(chǎn)品,可以幫助企業(yè)更好地了解市場(chǎng)和客戶,提高企業(yè)的競(jìng)爭力。如果您正在尋找一款的數(shù)據(jù)挖掘產(chǎn)品,我們的產(chǎn)品是您的的選擇。使用組合與推薦引擎,幫您深度挖掘商品的內(nèi)部關(guān)系!個(gè)性化數(shù)據(jù)挖掘工具

    這些模式的存在使機(jī)器得以據(jù)此進(jìn)行歸納。為了實(shí)現(xiàn)歸納,機(jī)器會(huì)利用它所認(rèn)定的出現(xiàn)數(shù)據(jù)中的重要特征對(duì)數(shù)據(jù)進(jìn)行“訓(xùn)練”,并借此得到一個(gè)模型。機(jī)器學(xué)習(xí)本質(zhì)上是從數(shù)據(jù)中構(gòu)建模型來進(jìn)行“數(shù)據(jù)預(yù)測(cè)”或者“下決定”的事兒,而個(gè)性化推薦系統(tǒng)的本質(zhì),也是預(yù)測(cè)用戶可能感興趣的事兒。機(jī)器學(xué)習(xí)可以用來做個(gè)性化推薦系統(tǒng),也可以做其他類型的預(yù)測(cè),比如金融**偵測(cè)、安防、**市場(chǎng)分析、垃圾email過濾等等。這張圖很好地解釋了機(jī)器學(xué)習(xí)的工作過程。機(jī)器學(xué)習(xí)分為無監(jiān)督學(xué)習(xí)和有監(jiān)督學(xué)習(xí)兩種,也有延伸出增強(qiáng)學(xué)習(xí)和半監(jiān)督學(xué)習(xí)的方法。Hadoop與Mahout那些推薦算法這里不再贅述,但是大數(shù)據(jù)技術(shù)方面的基礎(chǔ)知識(shí),作為小白還是需要要有所了解。眾所周知,推薦系統(tǒng)的數(shù)據(jù)處理往往是海量的,所以處理這些數(shù)據(jù)的時(shí)候要用到像Hadoop這樣的分布式處理軟件框架。Hadoop是一個(gè)能夠?qū)Υ罅繑?shù)據(jù)進(jìn)行分布式處理的軟件框架。Hadoop以一種可靠、高效、可伸縮的方式進(jìn)行數(shù)據(jù)處理。Hadoop是一個(gè)生造出來的詞,而Mahout中文意思就是象夫,可以看出,如果把大數(shù)據(jù)比作一只大象的話,那mahout就是就是指揮大數(shù)據(jù)進(jìn)行運(yùn)算的指揮官。Mahout是ApacheSoftwareFoundation(ASF)旗下的一個(gè)開源項(xiàng)目。制造業(yè)數(shù)據(jù)挖掘銷售百萬級(jí)數(shù)據(jù)挖掘,數(shù)分鐘即出結(jié)果。

    推薦系統(tǒng)的**思想:集群智慧凱文凱利曾經(jīng)在《失控》中曾經(jīng)說到蜂群的故事:蜜蜂看到一條信息:“去那兒,那是個(gè)好地方”。它們?nèi)タ催^之后回來舞蹈說,“是的,真是個(gè)好地方?!蓖ㄟ^這種重復(fù)強(qiáng)調(diào),所屬意的地點(diǎn)吸引了更多的探訪者,由此又有更多的探訪者加入進(jìn)來。按照收益遞增的法則,得票越多,反對(duì)越少。漸漸地,以滾雪球的方式形成一個(gè)大的群舞,成為舞曲終章的主宰,**大的蜂群獲勝。動(dòng)物的集群智慧凱文凱利用超級(jí)有機(jī)體可以來形容蜂群。同樣,這個(gè)詞也可以來形容整個(gè)互聯(lián)網(wǎng)上的人群。他們?cè)诰W(wǎng)絡(luò)上留下的痕跡可以說是無意識(shí)的,但是也帶有了某種“集群的意識(shí)”。扯遠(yuǎn)了,還是來看看互聯(lián)網(wǎng)集群智慧的例子:Wikipedia-用戶貢獻(xiàn)內(nèi)容:Wikipedia是一件集群智慧的典型產(chǎn)物,它完全由用戶來維護(hù),因?yàn)槊恳黄恼露紩?huì)有大量的用戶去進(jìn)行修改,所以**終的結(jié)果很少出現(xiàn)問題,而那些惡意的操作行為也會(huì)因?yàn)橛泻A康挠脩舻木S護(hù)而被盡快地修復(fù)。Google-利用海量數(shù)據(jù)進(jìn)行判斷:Google的Pagerank算法的**思想是通過其他網(wǎng)頁對(duì)當(dāng)前網(wǎng)頁的引用數(shù)來判斷網(wǎng)頁的等級(jí),這種算法需要通過海量的用戶數(shù)據(jù)來進(jìn)行。協(xié)同過濾說到個(gè)性化推薦**常用的設(shè)計(jì)思想,不得不說說協(xié)同過濾。

隨著智能制造技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘技術(shù)在智能制造行業(yè)中的應(yīng)用也越來越。數(shù)據(jù)挖掘可以通過分析生產(chǎn)過程中的傳感器數(shù)據(jù)、設(shè)備運(yùn)行數(shù)據(jù)、產(chǎn)品質(zhì)量數(shù)據(jù)等數(shù)據(jù),為制造企業(yè)提供更加的生產(chǎn)調(diào)度和質(zhì)量控制。同時(shí),數(shù)據(jù)挖掘還可以幫助制造企業(yè)進(jìn)行產(chǎn)品設(shè)計(jì)和市場(chǎng)分析,為企業(yè)提供更加科學(xué)的產(chǎn)品開發(fā)和市場(chǎng)營銷策略。數(shù)據(jù)挖掘在電商行業(yè)的應(yīng)用,隨著電商行業(yè)的發(fā)展,數(shù)據(jù)挖掘技術(shù)被廣泛應(yīng)用于電商平臺(tái)。通過對(duì)用戶行為、購買記錄等數(shù)據(jù)進(jìn)行分析,可以幫助電商平臺(tái)更好地了解用戶需求,提高銷售轉(zhuǎn)化率,優(yōu)化商品推薦等。同時(shí),數(shù)據(jù)挖掘還可以幫助電商平臺(tái)預(yù)測(cè)銷售趨勢(shì),優(yōu)化庫存管理,提高運(yùn)營效率。掌握關(guān)鍵技術(shù),并擁有自主知識(shí)產(chǎn)權(quán)。

    為什么需要個(gè)性化推薦?科技進(jìn)步帶來的是更大程度地提高效率和生產(chǎn)力已經(jīng)是無可爭辯的事實(shí)。隨著時(shí)代變遷的廣告業(yè),從廣播、電視業(yè)廣告的輝煌,到互聯(lián)網(wǎng)門戶時(shí)代的banner廣告和狂轟亂炸的edm,再到了搜索引擎和移動(dòng)互聯(lián)網(wǎng)時(shí)代的推薦位廣告,隨著人們的數(shù)據(jù)可被記錄并且計(jì)算,也隨之產(chǎn)生了計(jì)算廣告學(xué)這門新興學(xué)科。從廣撒網(wǎng)的廣告形式到精細(xì)地捕捉到用戶的需求,并且呈現(xiàn)給用戶更加恰當(dāng)?shù)膹V告,給互聯(lián)網(wǎng)公司帶來了巨額的廣告收入,這中間推薦系統(tǒng)功不可沒。早期的門戶網(wǎng)站充斥著banner廣告,并沒有精細(xì)觸達(dá)用戶電商的推薦系統(tǒng)則幫助電商網(wǎng)站**提高銷售額,亞馬遜通過個(gè)性化推薦系統(tǒng)能夠提高35%的銷售量。在2016年,推薦算法能夠?yàn)镹etflix節(jié)省每年10億美元。讓其中的冷門內(nèi)容也能夠發(fā)揮作用,需要依賴基于用戶習(xí)慣數(shù)據(jù)的個(gè)性化推薦系統(tǒng)——利用個(gè)性化推薦,相比簡單展示**受歡迎清單,觀看率提升3-4倍。而近兩年興起的內(nèi)容分發(fā)類產(chǎn)品更是基于內(nèi)容推薦的個(gè)性化推薦收獲了大量用戶的注意力。今日頭條、一點(diǎn)資訊,或是百度的feed流產(chǎn)品,已經(jīng)成為了除了微信之外的“時(shí)間***”。讓用戶愿意沉浸其中的原因,除了產(chǎn)品內(nèi)容本身的建設(shè),也有來自于個(gè)性化推薦的重要力量。為每個(gè)客戶定制個(gè)性化的產(chǎn)品推薦序列,提高成交率并優(yōu)化客戶體驗(yàn)。制造業(yè)數(shù)據(jù)挖掘銷售

強(qiáng)大,快捷,零門檻。沒有紛亂的按鈕,沒有繁瑣的步驟,沒有復(fù)雜的設(shè)置,小白級(jí)操作。個(gè)性化數(shù)據(jù)挖掘工具

    采用R語言針對(duì)“大眾”、“本田”、“奧迪”品牌汽車的銷量預(yù)測(cè)建立了支持向量回歸模型及隨機(jī)森林模型,按照MAE值**小原則應(yīng)用網(wǎng)格搜索法(GridSearch)進(jìn)行模型參數(shù)調(diào)優(yōu),同時(shí)針對(duì)三個(gè)品牌建立傳統(tǒng)的時(shí)間序列預(yù)測(cè)模型——自回歸積分滑動(dòng)平均模型(ARIMA)進(jìn)行綜合比較分析。為了有效和直觀地衡量不同模型的預(yù)測(cè)能力,本文選取均方根誤差(RMSE)、平均***百分比誤差(MAPE)兩個(gè)指標(biāo)來評(píng)估預(yù)測(cè)結(jié)果,各模型測(cè)試集預(yù)測(cè)結(jié)果如表2所示。從表2可以看出,無論從RMSE還是MAPE來說,機(jī)器學(xué)習(xí)模型的預(yù)測(cè)效果均有***優(yōu)勢(shì),相比傳統(tǒng)的時(shí)間序列ARIMA模型大幅度提高了預(yù)測(cè)準(zhǔn)確度,而且從MAPE指標(biāo)結(jié)果來看,ARIMA模型對(duì)于不同品牌汽車銷量預(yù)測(cè)差異非常大(奧迪比本田高了近15%),機(jī)器學(xué)習(xí)模型預(yù)測(cè)性能比較穩(wěn)定。所有模型中性能**優(yōu)的是隨機(jī)森林模型,預(yù)測(cè)平均誤差為,比ARIMA模型降低了,相比文獻(xiàn)[15]、[16]對(duì)大眾及奧迪相同品牌汽車月度銷量預(yù)測(cè)的MAPE分別降低了,預(yù)測(cè)精度有了***提升。從本質(zhì)上分析,網(wǎng)絡(luò)搜索數(shù)據(jù)與對(duì)應(yīng)品牌汽車銷量之間的關(guān)系并不是單純的線性關(guān)系,其中非線性關(guān)系的程度應(yīng)該大于線性關(guān)系的程度,因而兩種非線性機(jī)器學(xué)習(xí)模型的預(yù)測(cè)更為精確。個(gè)性化數(shù)據(jù)挖掘工具

上海暖榕智能科技有限責(zé)任公司是一家人工智能理論與算法軟件開發(fā),大數(shù)據(jù)服務(wù),軟件即服務(wù)(SaaS),數(shù)據(jù)分析與挖掘整體解決方案,經(jīng)營性互聯(lián)網(wǎng)文化信息服務(wù),信息系統(tǒng)集成和物聯(lián)網(wǎng)技術(shù)服務(wù),信息技術(shù)咨詢服務(wù),社會(huì)經(jīng)濟(jì)咨詢【依法須經(jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營活動(dòng)?!康墓荆铝τ诎l(fā)展為創(chuàng)新務(wù)實(shí)、誠實(shí)可信的企業(yè)。暖榕智能擁有一支經(jīng)驗(yàn)豐富、技術(shù)創(chuàng)新的專業(yè)研發(fā)團(tuán)隊(duì),以高度的專注和執(zhí)著為客戶提供暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案。暖榕智能始終以本分踏實(shí)的精神和必勝的信念,影響并帶動(dòng)團(tuán)隊(duì)取得成功。暖榕智能始終關(guān)注數(shù)碼、電腦行業(yè)。滿足市場(chǎng)需求,提高產(chǎn)品價(jià)值,是我們前行的力量。