在線數(shù)據(jù)挖掘組件

來源: 發(fā)布時(shí)間:2023-04-21

    也就是模型MAE**低時(shí)的Lambda取值,此時(shí)非零系數(shù)的變量個(gè)數(shù)*為12個(gè),相比之**7個(gè)關(guān)鍵詞特征數(shù)據(jù)已經(jīng)大幅度地縮減。通過查看coefficients參數(shù)可以得到模型的Intercept為5479632,所選取的關(guān)鍵詞變量及其所對應(yīng)的參數(shù)估計(jì)如表1所示。至此,本文首先進(jìn)行關(guān)鍵詞的選取及拓展,然后將傳統(tǒng)相關(guān)性分析與基于LASSO的特征選擇相結(jié)合應(yīng)用于搜索數(shù)據(jù)關(guān)鍵詞選取,**終選出針對“大眾”品牌汽車的12個(gè)網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征。使用同樣的方法,篩選得出“本田”及“奧迪”品牌汽車對應(yīng)的網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征分別為12個(gè)和13個(gè)。2實(shí)驗(yàn)分析與討論通過LASSO算法的應(yīng)用有效地解決了解釋變量多重共線性的問題,同時(shí)在特征選擇的過程中也得到了LASSO線性回歸模型參數(shù)估計(jì),但是該模型及現(xiàn)有研究大都使用基于**小二乘法的線性回歸模型,都無法解決異方差性及解釋變量與被解釋變量非線性關(guān)系的問題,這就會(huì)增加系數(shù)估計(jì)值的方差,結(jié)果造成系數(shù)估計(jì)值不穩(wěn)定,對異常值非常敏感,繼而會(huì)嚴(yán)重影響回歸線,**終影響預(yù)測值的準(zhǔn)確度[14]。所以本文又選取了兩種非線性的機(jī)器學(xué)習(xí)算法建立模型并進(jìn)行詳細(xì)的對比分析。本文選取2011年1月~2016年12月的數(shù)據(jù)作為訓(xùn)練集,將2017年12個(gè)月的數(shù)據(jù)作為測試集。深度見解:我們不做表面文章。我們知道,您想看到的,一定不是一眼就能看到的。在線數(shù)據(jù)挖掘組件

    這些模式的存在使機(jī)器得以據(jù)此進(jìn)行歸納。為了實(shí)現(xiàn)歸納,機(jī)器會(huì)利用它所認(rèn)定的出現(xiàn)數(shù)據(jù)中的重要特征對數(shù)據(jù)進(jìn)行“訓(xùn)練”,并借此得到一個(gè)模型。機(jī)器學(xué)習(xí)本質(zhì)上是從數(shù)據(jù)中構(gòu)建模型來進(jìn)行“數(shù)據(jù)預(yù)測”或者“下決定”的事兒,而個(gè)性化推薦系統(tǒng)的本質(zhì),也是預(yù)測用戶可能感興趣的事兒。機(jī)器學(xué)習(xí)可以用來做個(gè)性化推薦系統(tǒng),也可以做其他類型的預(yù)測,比如金融**偵測、安防、**市場分析、垃圾email過濾等等。這張圖很好地解釋了機(jī)器學(xué)習(xí)的工作過程。機(jī)器學(xué)習(xí)分為無監(jiān)督學(xué)習(xí)和有監(jiān)督學(xué)習(xí)兩種,也有延伸出增強(qiáng)學(xué)習(xí)和半監(jiān)督學(xué)習(xí)的方法。Hadoop與Mahout那些推薦算法這里不再贅述,但是大數(shù)據(jù)技術(shù)方面的基礎(chǔ)知識,作為小白還是需要要有所了解。眾所周知,推薦系統(tǒng)的數(shù)據(jù)處理往往是海量的,所以處理這些數(shù)據(jù)的時(shí)候要用到像Hadoop這樣的分布式處理軟件框架。Hadoop是一個(gè)能夠?qū)Υ罅繑?shù)據(jù)進(jìn)行分布式處理的軟件框架。Hadoop以一種可靠、高效、可伸縮的方式進(jìn)行數(shù)據(jù)處理。Hadoop是一個(gè)生造出來的詞,而Mahout中文意思就是象夫,可以看出,如果把大數(shù)據(jù)比作一只大象的話,那mahout就是就是指揮大數(shù)據(jù)進(jìn)行運(yùn)算的指揮官。Mahout是ApacheSoftwareFoundation(ASF)旗下的一個(gè)開源項(xiàng)目。智能數(shù)據(jù)挖掘組合與推薦使用時(shí)序預(yù)測引擎,幫您預(yù)測未來。

    注:這里的CF=collaborativefiltering而這兩種類型的協(xié)同過濾都是要基于用戶行為來進(jìn)行。而除了協(xié)同過濾之外,還有基于內(nèi)容的推薦、基于知識的推薦、混合推薦等方式。物以類聚,人以群分。這句話很好地解釋了協(xié)同過濾這種方法的思想。亞馬遜網(wǎng)站上對圖書的推薦-基于Item-CF前一陣參加pmcaff的人工智能產(chǎn)品經(jīng)理的活動(dòng),主講人香港中文大學(xué)的湯曉鷗教授(目前人工智能視覺方面的前列**)說,目前機(jī)器視覺領(lǐng)域可以通過社交網(wǎng)絡(luò)照片或者個(gè)人相冊中的圖片的學(xué)習(xí),可以做到預(yù)測個(gè)人征信。與誰的合影,在什么地方拍照都成為了機(jī)器預(yù)測個(gè)人特征的判斷因素。這也是利用了“人以群分"的常識,只是加上了高大上的機(jī)器視覺技術(shù)而已。機(jī)器學(xué)習(xí)與個(gè)性化推薦的關(guān)系什么是機(jī)器學(xué)習(xí)?《集群智慧編程》這本書里是這么解釋的:機(jī)器學(xué)習(xí)是人工智能領(lǐng)域中與算法相關(guān)的一個(gè)子域,它允許計(jì)算機(jī)不斷地進(jìn)行學(xué)習(xí)。大多數(shù)情況下,這相當(dāng)于將一組數(shù)據(jù)傳遞給算法,并由算法推斷出與這些數(shù)據(jù)的屬性相關(guān)的信息-借助這些信息,算法就能夠預(yù)測出未來有可能出現(xiàn)的其他數(shù)據(jù)。這種預(yù)測是完全有可能的,因?yàn)閹缀跛蟹请S機(jī)數(shù)據(jù)中,都會(huì)包含這樣或那樣的“模式(patterns)”。

    推薦系統(tǒng)的**思想:集群智慧凱文凱利曾經(jīng)在《失控》中曾經(jīng)說到蜂群的故事:蜜蜂看到一條信息:“去那兒,那是個(gè)好地方”。它們?nèi)タ催^之后回來舞蹈說,“是的,真是個(gè)好地方?!蓖ㄟ^這種重復(fù)強(qiáng)調(diào),所屬意的地點(diǎn)吸引了更多的探訪者,由此又有更多的探訪者加入進(jìn)來。按照收益遞增的法則,得票越多,反對越少。漸漸地,以滾雪球的方式形成一個(gè)大的群舞,成為舞曲終章的主宰,**大的蜂群獲勝。動(dòng)物的集群智慧凱文凱利用超級有機(jī)體可以來形容蜂群。同樣,這個(gè)詞也可以來形容整個(gè)互聯(lián)網(wǎng)上的人群。他們在網(wǎng)絡(luò)上留下的痕跡可以說是無意識的,但是也帶有了某種“集群的意識”。扯遠(yuǎn)了,還是來看看互聯(lián)網(wǎng)集群智慧的例子:Wikipedia-用戶貢獻(xiàn)內(nèi)容:Wikipedia是一件集群智慧的典型產(chǎn)物,它完全由用戶來維護(hù),因?yàn)槊恳黄恼露紩?huì)有大量的用戶去進(jìn)行修改,所以**終的結(jié)果很少出現(xiàn)問題,而那些惡意的操作行為也會(huì)因?yàn)橛泻A康挠脩舻木S護(hù)而被盡快地修復(fù)。Google-利用海量數(shù)據(jù)進(jìn)行判斷:Google的Pagerank算法的**思想是通過其他網(wǎng)頁對當(dāng)前網(wǎng)頁的引用數(shù)來判斷網(wǎng)頁的等級,這種算法需要通過海量的用戶數(shù)據(jù)來進(jìn)行。協(xié)同過濾說到個(gè)性化推薦**常用的設(shè)計(jì)思想,不得不說說協(xié)同過濾。快速:分布式計(jì)算引擎+自研高效調(diào)度技術(shù),只需數(shù)分鐘即可獲得結(jié)果!

    某外賣app需要根據(jù)早中晚人們的用餐習(xí)慣來給用戶推送不一樣的食物或者優(yōu)惠券,這樣推薦不同的食物更符合用戶的習(xí)慣。另外根據(jù)地點(diǎn)的上下文說的是,如果你在辦公室用某外賣app點(diǎn)一份外賣,那么推薦給你的外賣餐廳是要離你較近的,而不是推送十公里以外的餐廳?;趦?nèi)容的推薦與熱度算法我們要知道個(gè)性化推薦一般會(huì)有兩種通用的方法,包括基于內(nèi)容的個(gè)性化推薦,和基于用戶行為的個(gè)性化推薦。基于用戶行為的推薦,會(huì)有基于物品的協(xié)同過濾(Item-CF)與基于用戶的協(xié)同過濾(User-CF)兩種。而協(xié)同過濾往往都是要建立在大量的用戶行為數(shù)據(jù)的基礎(chǔ)上,在產(chǎn)品發(fā)布之初,沒有那么大量的數(shù)據(jù)。所以這個(gè)時(shí)候就要依靠基于內(nèi)容的推薦或者熱度算法?;趦?nèi)容的推薦一般來說,基于內(nèi)容的推薦的意思是,會(huì)在產(chǎn)品初期打造階段引入**的知識來建立起商品的信息知識庫,建立商品之間的相關(guān)度。比如,汽車之家的所有的車型,包括了汽車的各種性能參數(shù);電商網(wǎng)站中的女裝也包括了各種規(guī)格。在內(nèi)容的推薦過程中,只需要利用用戶當(dāng)時(shí)的上下文情況:例如用戶正在看一個(gè)20萬左右的大眾轎車,系統(tǒng)就會(huì)根據(jù)這輛車的性能參數(shù),來找到另外幾輛與這輛車相似的車來推薦給用戶。一般來說。很多報(bào)表工具只能統(tǒng)計(jì)、聚合、切片、下鉆、大屏等,看似很炫,其實(shí)挖得很淺,無法應(yīng)對深度需求。個(gè)性化數(shù)據(jù)挖掘銷售

基于智能擬合引擎引擎擬合影響因素并預(yù)測未知。在線數(shù)據(jù)挖掘組件

    建立這樣的數(shù)據(jù)庫需要專業(yè)人士、編輯等通過手動(dòng)完成,有一定的工作量,但對于冷啟動(dòng)階段的產(chǎn)品來說,是一個(gè)相對有效的方法。汽車之家網(wǎng)站在用戶查看一輛車的同時(shí)推薦與其相似的車另外一種情況是純文本的內(nèi)容沒有明確的參數(shù)特征,在這種情況下,需要通過文本分析技術(shù)來自動(dòng)提取文本的關(guān)鍵詞(通過自然語言技術(shù)的進(jìn)行分詞),通過數(shù)據(jù)挖掘來找到文本與文本之間的聯(lián)系和相似性。熱度算法左:微博右:今日頭條另外,由于各種社會(huì)熱點(diǎn)話題普遍是人們關(guān)注較高的,以及由于在產(chǎn)品發(fā)展初期,沒有收集到大量用戶數(shù)據(jù)的情況下,“熱度算法”也是一種慣常使用的方式?!盁岫人惴ā凹磳狳c(diǎn)的內(nèi)容優(yōu)先推薦給用戶。這里值得注意的是,熱點(diǎn)不會(huì)永遠(yuǎn)是熱點(diǎn),而是具有時(shí)效性的。所以發(fā)布初期用熱度算法實(shí)現(xiàn)冷啟動(dòng),積累了一定量級以后,才能逐漸開展個(gè)性化推薦算法。而熱度算法在使用時(shí)也需要考慮到如何避免馬太效應(yīng):毋庸置疑的是,在滾雪球的效應(yīng)之下,互聯(lián)網(wǎng)民的消費(fèi)&觀點(diǎn)&行為會(huì)趨同,就像前一陣《戰(zhàn)狼2》的熱映一樣,**的票房成績完全取決于鋪天蓋地式的宣傳,而群體將會(huì)成為烏合之眾。產(chǎn)品的冷啟動(dòng)每個(gè)有推薦功能的產(chǎn)品都會(huì)遇到冷啟動(dòng)(coldstart)的問題。在線數(shù)據(jù)挖掘組件

上海暖榕智能科技有限責(zé)任公司是一家集研發(fā)、制造、銷售為一體的****,公司位于聯(lián)航路1588弄(浦江鎮(zhèn)481街坊6/2丘)1幢技術(shù)中心主樓108室,成立于2019-12-11。公司秉承著技術(shù)研發(fā)、客戶優(yōu)先的原則,為國內(nèi)暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案的產(chǎn)品發(fā)展添磚加瓦。暖榕,暖榕智能目前推出了暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等多款產(chǎn)品,已經(jīng)和行業(yè)內(nèi)多家企業(yè)建立合作伙伴關(guān)系,目前產(chǎn)品已經(jīng)應(yīng)用于多個(gè)領(lǐng)域。我們堅(jiān)持技術(shù)創(chuàng)新,把握市場關(guān)鍵需求,以重心技術(shù)能力,助力數(shù)碼、電腦發(fā)展。上海暖榕智能科技有限責(zé)任公司每年將部分收入投入到暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品開發(fā)工作中,也為公司的技術(shù)創(chuàng)新和人材培養(yǎng)起到了很好的推動(dòng)作用。公司在長期的生產(chǎn)運(yùn)營中形成了一套完善的科技激勵(lì)政策,以激勵(lì)在技術(shù)研發(fā)、產(chǎn)品改進(jìn)等。上海暖榕智能科技有限責(zé)任公司嚴(yán)格規(guī)范暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品管理流程,確保公司產(chǎn)品質(zhì)量的可控可靠。公司擁有銷售/售后服務(wù)團(tuán)隊(duì),分工明細(xì),服務(wù)貼心,為廣大用戶提供滿意的服務(wù)。