當(dāng)前電子產(chǎn)品日漸向著小型化趨勢發(fā)展,對產(chǎn)品元器件的微型化要求也越來越高,微型器件的組裝和檢測難以只通過人工完成,由此產(chǎn)生越來越多的自動檢測設(shè)備需求。與此同時,自動檢測設(shè)備還能夠健身制造成本、提升產(chǎn)品質(zhì)量,AOI檢測設(shè)備代替人工的進(jìn)程發(fā)展較快。在此背景下,中國自動光學(xué)檢測行業(yè)逐步發(fā)展起來。從AOI檢測設(shè)備來看,目前AOI檢測設(shè)備是SMT加工廠必備的設(shè)備,平均一條SMT生產(chǎn)線至少需要2-3臺AOI檢測設(shè)備,但我國AOI檢測設(shè)備的滲透率較低,只為50%左右。簡單來說貨真價實的AOI檢測儀模擬和拓展了人類眼、手的功能,利用光學(xué)成像方法模擬人眼的的視覺成像功能。湖南專業(yè)AOI系統(tǒng)
AIVS-D系列在線PCBA插件AOI通過1200或2000萬高分辨率的工業(yè)相機(jī),從電子電路板頂面拍照,通過AI人工技術(shù),深度學(xué)習(xí)算法、智能圖像分析,檢測電子電路板上插件元器件的缺件、多件、偏移、反向、錯件、浮高、OCV(文字識別)、可支持測試色環(huán)電阻錯料。本插件AOI設(shè)備可應(yīng)用于波峰焊爐前或爐后,應(yīng)用在爐后時,可自動檢測板卡的旋轉(zhuǎn)角度,保證元件的檢測正確性和穩(wěn)定性。AIVS-D系列在線PCBA插件AOI采用的卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(FeedforwardNeuralNetworks),是深度學(xué)習(xí)(deeplearning)的表示算法之一。卷積神經(jīng)網(wǎng)絡(luò)仿造生物的視知覺(visualperception)機(jī)制構(gòu)建,可以進(jìn)行監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)。作為圖像識別領(lǐng)域的算法之一,卷積神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)數(shù)據(jù)充足時有穩(wěn)定的表現(xiàn)。針對本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡(luò)將用于提取圖像的判別特征,再通過分類器進(jìn)行學(xué)習(xí)和識別。福建不需要設(shè)置參數(shù)的AOI生產(chǎn)圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準(zhǔn)確的檢出。
科技進(jìn)程的加速,產(chǎn)品的品質(zhì)化與智能化要求在日益擴(kuò)增。生產(chǎn)制造商對于產(chǎn)品的質(zhì)檢體系需要不斷地更新升級,跨越了從人工檢測到傳統(tǒng)的視覺檢測再到具有深度學(xué)習(xí)算法的智能檢測這一整條進(jìn)化鏈,深度學(xué)習(xí)算法彌補(bǔ)了傳統(tǒng)算法無法檢測復(fù)雜特征的漏缺,免去了人工提取特征這一耗時耗力的步驟,更大程度為生產(chǎn)企業(yè)提升制造效率。然而凡事都有兩面性,深度學(xué)習(xí)算法也不例外,只是,其優(yōu)勢的比例遠(yuǎn)遠(yuǎn)超越了不足,因而能夠迅速占領(lǐng)行業(yè)市場。
AOI檢測基本原理與設(shè)備構(gòu)成:AOI檢測原理是采用攝像技術(shù)將被檢測物體的反射光強(qiáng)以定量化的灰階值輸出,通過與標(biāo)準(zhǔn)圖像的灰階值進(jìn)行比較,分析判定缺陷并進(jìn)行分類的過程。與人工檢查做一個形象的比喻,AOI采用的普通LED或特殊光源相當(dāng)于人工檢查時的自然光,AOI采用的光學(xué)傳感器和光學(xué)透鏡相當(dāng)于人眼,AOI的圖像處理與分析系統(tǒng)就相當(dāng)于人腦,即“看”與“判”兩個環(huán)節(jié)。因此,AOI檢測的工作邏輯可以簡單地分為圖像采集階段(光學(xué)掃描和數(shù)據(jù)收集),數(shù)據(jù)處理階段(數(shù)據(jù)分類與轉(zhuǎn)換),圖像分析段(特征提取與模板比對)和缺陷報告階段四個階段(缺陷大小類型分類等)。為了支持和實現(xiàn)AOI檢測的上述四個功能,AOI設(shè)備的硬件系統(tǒng)也就包括工作平臺,成像系統(tǒng),圖像處理系統(tǒng)和電氣系統(tǒng)四個部分,是一個集成了機(jī)械,自動化,光學(xué)和軟件等多學(xué)科的自動化設(shè)備。 經(jīng)過波峰焊后,焊點所有的參數(shù)會有很大的變化,這主要是由于焊爐內(nèi)錫的老化導(dǎo)致焊盤反射特性從光亮到灰暗。
一是分類,即可以將產(chǎn)品分為合格和不合格,這是深度學(xué)習(xí)很重要的一個應(yīng)用;二是定位,即幫助使用者定位物體的位置和數(shù)量;三是分割,即可以找到缺陷的輪廓,基于缺陷的輪廓和大小,對產(chǎn)品進(jìn)行更精細(xì)的判別。通過深度學(xué)習(xí)算法,軟件可以自動學(xué)習(xí)瑕疵的特征,使得無規(guī)律圖像的分析變得可能;在精確度方面,可通過深度學(xué)習(xí)算法和制造業(yè)特有的數(shù)據(jù)提高檢測的精確度;雖然深度學(xué)習(xí)在很多方面具有優(yōu)勢,不過也并不是所有任務(wù)都適用。深度學(xué)習(xí)對瑕疵分類更有優(yōu)勢。與人工檢查做一個形象的比喻,AOI采用的普通LED或特殊光源相當(dāng)于人工檢查時的自然光。AOI銷售
軟件輔助建模:極速建模,一鍵智能搜索80多種器件。湖南專業(yè)AOI系統(tǒng)
AOI是AutomatedOpticalInspection的縮寫,中文翻譯是自動光學(xué)檢測。AOI本身是一種技術(shù),但目前大多指的是AOI設(shè)備,即自動光學(xué)檢測設(shè)備。在國外AOI設(shè)備已經(jīng)有一定的歷史,AOl技術(shù)的主要應(yīng)用領(lǐng)域包括PCB、FPD、半導(dǎo)體、光伏等多個行業(yè),AOI設(shè)備多是在半導(dǎo)體和面板檢測領(lǐng)域應(yīng)用,導(dǎo)致目前AOI已經(jīng)被默認(rèn)為半導(dǎo)體和面板自動化檢測的代名詞,而且更多強(qiáng)調(diào)的是貼裝、焊錫等表面缺陷的檢測。隨著技術(shù)的發(fā)展,已經(jīng)出現(xiàn)了3D-AOI產(chǎn)品。當(dāng)然,針對其他行業(yè)中的應(yīng)用,如紡織品、金屬等產(chǎn)品的表面檢測,我們也可以這些檢測設(shè)備為AOI設(shè)備,只不過目前其他行業(yè)的應(yīng)用暫時沒有這么廣泛應(yīng)用,這種共識還沒有達(dá)成。 湖南專業(yè)AOI系統(tǒng)
深圳愛為視智能科技有限公司致力于機(jī)械及行業(yè)設(shè)備,是一家其他型的公司。公司業(yè)務(wù)分為智能視覺檢測設(shè)備等,目前不斷進(jìn)行創(chuàng)新和服務(wù)改進(jìn),為客戶提供良好的產(chǎn)品和服務(wù)。公司從事機(jī)械及行業(yè)設(shè)備多年,有著創(chuàng)新的設(shè)計、強(qiáng)大的技術(shù),還有一批**的專業(yè)化的隊伍,確保為客戶提供良好的產(chǎn)品及服務(wù)。愛為視秉承“客戶為尊、服務(wù)為榮、創(chuàng)意為先、技術(shù)為實”的經(jīng)營理念,全力打造公司的重點競爭力。