同濟(jì)生物董事長作為嘉賓現(xiàn)場致辭宇航人2025年新春年會!
同濟(jì)生物受邀走訪安惠益家,為居家養(yǎng)老平臺提供膳食營養(yǎng)解決方案
同濟(jì)生物首腦銀杏膠囊研發(fā)人吳健博士再獲新身份認(rèn)證!
吾谷媽媽攜手同濟(jì)生物醫(yī)藥研究院院長直播首秀!
心中有信仰?生命有力量|吾谷媽媽聯(lián)合同濟(jì)生物用愛呵護(hù)每一個家
同濟(jì)生物參加2024飲食與健康論壇暨營養(yǎng)與疾病防治學(xué)術(shù)會!
淺談大健康行業(yè)口服**未來新方向!
同濟(jì)科普丨神經(jīng)酸#腦健康功能食品解決方案
揭開鱷魚的神秘面紗-同濟(jì)生物&利得盈養(yǎng)鱷魚小分子肽固體飲料
同濟(jì)多湃全球發(fā)布會圓滿成功!
數(shù)據(jù)挖掘依賴于(1)基于統(tǒng)計(jì)的抽樣、估計(jì)和假設(shè)檢驗(yàn)的思想;(2)基于人工智能、模式識別和機(jī)器學(xué)習(xí)的搜索算法、建模方法和學(xué)習(xí)理論。數(shù)據(jù)挖掘也迅速吸收了其他領(lǐng)域的思想,包括優(yōu)化、演化計(jì)算、信息論、信號處理、可視化和信息檢索。其他一些領(lǐng)域也發(fā)揮著重要的支撐作用。特別是,數(shù)據(jù)庫系統(tǒng)必須提供高效的存儲、索引和查詢處理支持。在處理海量數(shù)據(jù)集時,基于高性能計(jì)算的方法通常很重要。分布式技術(shù)還可以幫助處理大量數(shù)據(jù),并且在無法集中處理數(shù)據(jù)時更為重要。數(shù)據(jù)挖掘和OLAP的區(qū)別在于,數(shù)據(jù)挖掘不是用來檢查預(yù)期的模型是否正確,而是在數(shù)據(jù)庫中查找模型本身?;旧?,這是一個歸納過程。例如,使用數(shù)據(jù)挖掘工具的分析師想要找到導(dǎo)致違約的風(fēng)險(xiǎn)因素。數(shù)據(jù)挖掘工具可以幫助他發(fā)現(xiàn)高負(fù)債和低收入的影響因素,甚至可以發(fā)現(xiàn)一些分析師從未想過或嘗試過的其他因素,例如年齡。數(shù)據(jù)挖掘可以通過分析數(shù)據(jù)集中的模式和趨勢,發(fā)現(xiàn)隱藏在數(shù)據(jù)背后的規(guī)律和關(guān)聯(lián)。餐飲數(shù)據(jù)挖掘收費(fèi)
然后針對不同價格區(qū)間的汽車銷量與相應(yīng)合成指數(shù)進(jìn)行建模預(yù)測且平均***誤差百分?jǐn)?shù)均不超過4%,但是同一價格區(qū)間內(nèi)包含眾多不同品牌車型,預(yù)測結(jié)果無法提供有價值的決策支持;文獻(xiàn)[6]、文獻(xiàn)[7]針對大眾途觀和寶馬汽車銷量進(jìn)行預(yù)測研究,通過人工方式進(jìn)行網(wǎng)絡(luò)數(shù)據(jù)關(guān)鍵詞的選取,發(fā)現(xiàn)加入百度關(guān)鍵詞作為解釋變量的模型相比傳統(tǒng)的ARMA模型,預(yù)測精度有了一定程度的提高;文獻(xiàn)[8]利用經(jīng)濟(jì)變量和谷歌在線搜索數(shù)據(jù)建立預(yù)測月度汽車**的多變量模型,結(jié)果表明包括谷歌搜索數(shù)據(jù)在內(nèi)的模型在統(tǒng)計(jì)上超過了大多數(shù)預(yù)測領(lǐng)域的傳統(tǒng)模型;文獻(xiàn)[9]提出了一種搜索數(shù)據(jù)關(guān)鍵特征選取方法,但是該選取方法**終**保留了相關(guān)性**高的一個關(guān)鍵特征,難免會造成有效信息的損失。綜上所述,目前的研究存在的問題包括研究對象與時間粒度選擇不當(dāng),網(wǎng)絡(luò)數(shù)據(jù)特征分析及選取的科學(xué)體系暫未形成,傳統(tǒng)模型預(yù)測性能具有局限性。本文擬基于網(wǎng)絡(luò)搜索數(shù)據(jù),將品牌汽車銷量作為研究對象,時間粒度選取為月度,將傳統(tǒng)相關(guān)性分析與基于LASSO的特征選擇方法相結(jié)合,篩選出**優(yōu)的關(guān)鍵特征數(shù)據(jù),然后應(yīng)用多種機(jī)器學(xué)習(xí)算法建立品牌汽車銷量的預(yù)測模型。個性化數(shù)據(jù)挖掘智能獲客專業(yè)分析,圖文并茂支持分享、保存、打印、下載?除非用戶主動保存,平臺不存儲任何用戶數(shù)據(jù),閱后即焚?。
數(shù)據(jù)挖掘在能源行業(yè)的應(yīng)用:能源行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過對能源消耗記錄、能源生產(chǎn)效率等數(shù)據(jù)進(jìn)行分析,可以幫助能源企業(yè)更好地了解能源消耗情況,提高能源利用效率,優(yōu)化能源生產(chǎn)方案等。同時,數(shù)據(jù)挖掘還可以幫助能源企業(yè)預(yù)測市場需求,提高能源供應(yīng)管理能力。數(shù)據(jù)挖掘在社交媒體行業(yè)的應(yīng)用:社交媒體行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過對用戶行為、社交關(guān)系等數(shù)據(jù)進(jìn)行分析,可以幫助社交媒體平臺更好地了解用戶需求,提高用戶體驗(yàn),優(yōu)化廣告投放等。同時,數(shù)據(jù)挖掘還可以幫助社交媒體平臺預(yù)測用戶趨勢,提高社交媒體管理能力。
從而實(shí)現(xiàn)針對性更強(qiáng)、更準(zhǔn)確、更具有應(yīng)用價值的品牌汽車銷量的預(yù)測。1網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征選取本文選取“大眾”、“本田”、“奧迪”三個比較有代表性的品牌汽車作為研究對象,收集了2011年1月~2017年12月期間各品牌汽車月度銷量數(shù)據(jù)。根據(jù)消費(fèi)者購買決策過程,消費(fèi)者在產(chǎn)生購車需求后,大多數(shù)購車消費(fèi)者都會通過搜索引擎從網(wǎng)絡(luò)中快速獲取到所需要的信息,而關(guān)鍵詞搜索是在線信息搜索時**常用的策略,所以將用戶搜索關(guān)鍵詞作為網(wǎng)絡(luò)搜索數(shù)據(jù)的關(guān)鍵特征。本文選擇國內(nèi)應(yīng)用**為***的百度搜索引擎的百度指數(shù)作為網(wǎng)絡(luò)搜索關(guān)鍵詞數(shù)據(jù)來源。下面以“大眾”品牌汽車為例進(jìn)行詳細(xì)說明。關(guān)鍵詞的選取及拓展本文采用文本挖掘的方法,結(jié)合汽車品牌、**車型信息、車型配置指標(biāo)數(shù)據(jù)等各個方面的信息,對網(wǎng)絡(luò)上與大眾品牌汽車相關(guān)的新聞、論壇文章、點(diǎn)評、分享交流等信息進(jìn)行查找收集,剔除掉一些無用信息后,再使用NLPIR漢語分詞系統(tǒng)對原始文本進(jìn)行關(guān)鍵詞提取,得到關(guān)鍵詞列表及其權(quán)重,選定其中權(quán)值較高的“大眾”、“大眾4S店”、“大眾SUV”、“大眾POLO”、“大眾商務(wù)車”等為初始關(guān)鍵詞。數(shù)據(jù)挖掘是一種從大量數(shù)據(jù)中提取有用信息的技術(shù),可以幫助企業(yè)做出更明智的決策。
采用R語言針對“大眾”、“本田”、“奧迪”品牌汽車的銷量預(yù)測建立了支持向量回歸模型及隨機(jī)森林模型,按照MAE值**小原則應(yīng)用網(wǎng)格搜索法(GridSearch)進(jìn)行模型參數(shù)調(diào)優(yōu),同時針對三個品牌建立傳統(tǒng)的時間序列預(yù)測模型——自回歸積分滑動平均模型(ARIMA)進(jìn)行綜合比較分析。為了有效和直觀地衡量不同模型的預(yù)測能力,本文選取均方根誤差(RMSE)、平均***百分比誤差(MAPE)兩個指標(biāo)來評估預(yù)測結(jié)果,各模型測試集預(yù)測結(jié)果如表2所示。從表2可以看出,無論從RMSE還是MAPE來說,機(jī)器學(xué)習(xí)模型的預(yù)測效果均有***優(yōu)勢,相比傳統(tǒng)的時間序列ARIMA模型大幅度提高了預(yù)測準(zhǔn)確度,而且從MAPE指標(biāo)結(jié)果來看,ARIMA模型對于不同品牌汽車銷量預(yù)測差異非常大(奧迪比本田高了近15%),機(jī)器學(xué)習(xí)模型預(yù)測性能比較穩(wěn)定。所有模型中性能**優(yōu)的是隨機(jī)森林模型,預(yù)測平均誤差為,比ARIMA模型降低了,相比文獻(xiàn)[15]、[16]對大眾及奧迪相同品牌汽車月度銷量預(yù)測的MAPE分別降低了,預(yù)測精度有了***提升。從本質(zhì)上分析,網(wǎng)絡(luò)搜索數(shù)據(jù)與對應(yīng)品牌汽車銷量之間的關(guān)系并不是單純的線性關(guān)系,其中非線性關(guān)系的程度應(yīng)該大于線性關(guān)系的程度,因而兩種非線性機(jī)器學(xué)習(xí)模型的預(yù)測更為精確。數(shù)據(jù)挖掘從未如此簡單。新型數(shù)據(jù)挖掘哪幾種
部署一攬子解決方案,實(shí)現(xiàn)業(yè)務(wù)、數(shù)據(jù)、平臺深度融合,符合用戶對費(fèi)用、效能、算力、安全合規(guī)性的期望。餐飲數(shù)據(jù)挖掘收費(fèi)
1.定義問題。開始搜索知識之前的個也是重要的要求是理解數(shù)據(jù)和業(yè)務(wù)問題。應(yīng)該對目標(biāo)有一個清晰明確的定義,即決定你到底想做什么。例如,如果你想增加電子郵件的使用,你可能想“增加用戶使用”或“增加用戶使用價值”。為解決這兩個問題而創(chuàng)建的模型幾乎完全不同,需要做出決定。2.創(chuàng)建數(shù)據(jù)挖掘庫,創(chuàng)建數(shù)據(jù)挖掘庫包括以下步驟:數(shù)據(jù)挖掘、數(shù)據(jù)描述、選擇、數(shù)據(jù)質(zhì)量評估和數(shù)據(jù)清理、合并和集成、元數(shù)據(jù)創(chuàng)建、數(shù)據(jù)挖掘庫加載和數(shù)據(jù)挖掘庫維護(hù)。3、數(shù)據(jù)分析。分析的目標(biāo)是找到對預(yù)測輸出影響的數(shù)據(jù)字段,并決定是否定義派生字段。如果數(shù)據(jù)集包含成百上千個字段,查看和分析數(shù)據(jù)會非常耗時和繁瑣,這時候就需要選擇一款界面良好、功能強(qiáng)大的工具軟件來幫助你完成這些任務(wù)。餐飲數(shù)據(jù)挖掘收費(fèi)
上海暖榕智能科技有限責(zé)任公司是一家集研發(fā)、生產(chǎn)、咨詢、規(guī)劃、銷售、服務(wù)于一體的服務(wù)型企業(yè)。公司成立于2019-12-11,多年來在暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案行業(yè)形成了成熟、可靠的研發(fā)、生產(chǎn)體系。主要經(jīng)營暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等產(chǎn)品服務(wù),現(xiàn)在公司擁有一支經(jīng)驗(yàn)豐富的研發(fā)設(shè)計(jì)團(tuán)隊(duì),對于產(chǎn)品研發(fā)和生產(chǎn)要求極為嚴(yán)格,完全按照行業(yè)標(biāo)準(zhǔn)研發(fā)和生產(chǎn)。暖榕,暖榕智能為用戶提供真誠、貼心的售前、售后服務(wù),產(chǎn)品價格實(shí)惠。公司秉承為社會做貢獻(xiàn)、為用戶做服務(wù)的經(jīng)營理念,致力向社會和用戶提供滿意的產(chǎn)品和服務(wù)。上海暖榕智能科技有限責(zé)任公司以市場為導(dǎo)向,以創(chuàng)新為動力。不斷提升管理水平及暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品質(zhì)量。本公司以良好的商品品質(zhì)、誠信的經(jīng)營理念期待您的到來!