通用數(shù)據(jù)挖掘工具

來源: 發(fā)布時(shí)間:2023-06-15

    提供一些可擴(kuò)展的機(jī)器學(xué)習(xí)領(lǐng)域經(jīng)典算法的實(shí)現(xiàn),旨在幫助開發(fā)人員更加方便快捷地創(chuàng)建智能應(yīng)用程序。其目的也和其他的開源項(xiàng)目一樣,Mahout避免了在機(jī)器學(xué)習(xí)算法上重復(fù)造輪子。推薦系統(tǒng)的數(shù)據(jù)來源眾所周知,對(duì)推薦系統(tǒng)的個(gè)性化推薦算法需要運(yùn)用來自用戶的數(shù)據(jù),那么這些數(shù)據(jù)都是來自于哪里,為我們所用呢?基于用戶行為數(shù)據(jù):舉個(gè)好玩的例子:通過GPS信號(hào),可以測(cè)得手機(jī)速度以及位置,當(dāng)用戶的手機(jī)在早上8點(diǎn)由高速變成低速,可以判斷是從地鐵出來,就可以向他推薦附近的麥當(dāng)勞早餐優(yōu)惠券了。另外,運(yùn)營(yíng)商是可以得到用戶手機(jī)訪問過的網(wǎng)頁數(shù)據(jù)的,通過文本挖掘,可以了解用戶的偏好,如看過很多足球類的文章,可以了解用戶為喜歡足球的用戶,而喜歡足球的用戶很大的可能性是男性,則可以多推送一些相關(guān)的體育新聞內(nèi)容,甚至男性用品(比如剃須刀)廣告給他?;谏缃痪W(wǎng)絡(luò)數(shù)據(jù):通過用戶的社交網(wǎng)絡(luò)數(shù)據(jù)可以基于好友關(guān)系,推薦朋友給用戶。當(dāng)小紅和小明同時(shí)有10個(gè)朋友,那就說明他們?cè)谝粋€(gè)朋友圈子。他們共同好友越多,就更有可能在兩個(gè)人之間做相互推薦?;谏舷挛牡臄?shù)據(jù):上下文的數(shù)據(jù)又可以分為兩種,時(shí)間上下文與地點(diǎn)上下文。舉一個(gè)栗子,在時(shí)間上下文的情況下。相比自建團(tuán)隊(duì),成本與時(shí)間均大降低,效率指數(shù)級(jí)提高!通用數(shù)據(jù)挖掘工具

    注:這里的CF=collaborativefiltering而這兩種類型的協(xié)同過濾都是要基于用戶行為來進(jìn)行。而除了協(xié)同過濾之外,還有基于內(nèi)容的推薦、基于知識(shí)的推薦、混合推薦等方式。物以類聚,人以群分。這句話很好地解釋了協(xié)同過濾這種方法的思想。亞馬遜網(wǎng)站上對(duì)圖書的推薦-基于Item-CF前一陣參加pmcaff的人工智能產(chǎn)品經(jīng)理的活動(dòng),主講人香港中文大學(xué)的湯曉鷗教授(目前人工智能視覺方面的前列**)說,目前機(jī)器視覺領(lǐng)域可以通過社交網(wǎng)絡(luò)照片或者個(gè)人相冊(cè)中的圖片的學(xué)習(xí),可以做到預(yù)測(cè)個(gè)人征信。與誰的合影,在什么地方拍照都成為了機(jī)器預(yù)測(cè)個(gè)人特征的判斷因素。這也是利用了“人以群分"的常識(shí),只是加上了高大上的機(jī)器視覺技術(shù)而已。機(jī)器學(xué)習(xí)與個(gè)性化推薦的關(guān)系什么是機(jī)器學(xué)習(xí)?《集群智慧編程》這本書里是這么解釋的:機(jī)器學(xué)習(xí)是人工智能領(lǐng)域中與算法相關(guān)的一個(gè)子域,它允許計(jì)算機(jī)不斷地進(jìn)行學(xué)習(xí)。大多數(shù)情況下,這相當(dāng)于將一組數(shù)據(jù)傳遞給算法,并由算法推斷出與這些數(shù)據(jù)的屬性相關(guān)的信息-借助這些信息,算法就能夠預(yù)測(cè)出未來有可能出現(xiàn)的其他數(shù)據(jù)。這種預(yù)測(cè)是完全有可能的,因?yàn)閹缀跛蟹请S機(jī)數(shù)據(jù)中,都會(huì)包含這樣或那樣的“模式(patterns)”。零售數(shù)據(jù)挖掘工具有哪些我們的專業(yè)性、可靠性及先進(jìn)性,將使您額外受益。

我們的數(shù)據(jù)挖掘服務(wù)具有以下優(yōu)勢(shì):1.高效性:我們的數(shù)據(jù)挖掘工具可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地發(fā)現(xiàn)有用信息,避免誤判和誤導(dǎo)。3.定制化:我們的數(shù)據(jù)挖掘服務(wù)可以根據(jù)客戶需求進(jìn)行定制化,滿足客戶不同的業(yè)務(wù)需求。4.專業(yè)性:我們的數(shù)據(jù)挖掘團(tuán)隊(duì)由專業(yè)的數(shù)據(jù)分析師和工程師組成,具有豐富的數(shù)據(jù)挖掘經(jīng)驗(yàn)和技術(shù)能力。作為一家專注于數(shù)據(jù)挖掘的公司,我們致力于為客戶提供比較好質(zhì)的數(shù)據(jù)挖掘服務(wù)。如果您需要數(shù)據(jù)挖掘服務(wù),請(qǐng)聯(lián)系我們,我們將竭誠為您服務(wù)。

    但是若保留所有的解釋變量,解釋變量之間也可能存在多重共線性,所以本文在相關(guān)性分析基礎(chǔ)上應(yīng)用LASSO算法來進(jìn)一步分析與選取特征[10]?;贚ASSO的特征選取在高維數(shù)據(jù)變量選擇方法的研究領(lǐng)域中,Tibshirani在1996年提出普通線性模型下的LeastAbsoluteShrinkageandSelectionOperate(LASSO)算法,LASSO算法就是在損失函數(shù)后面加上懲罰項(xiàng)(即L1正則項(xiàng)),L1正則項(xiàng)可以約束方程的稀疏性,這種稀疏性即可應(yīng)用于特征的選擇,這種方法與傳統(tǒng)的算法相比優(yōu)點(diǎn)在于可以在進(jìn)行連續(xù)的變量選擇的同時(shí)進(jìn)行模型參數(shù)估計(jì)[11]。而且LASSO算法可以有效解決解釋變量多重共線性的問題,使得后續(xù)建立的模型擁有穩(wěn)定的性能。針對(duì)上一節(jié)相關(guān)性分析結(jié)果,采用R語言中的glmnet包實(shí)現(xiàn)的LASSO算法對(duì)關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行分析與特征選取。通過分析模型的Lambda解路徑圖可以發(fā)現(xiàn),隨著懲罰的力度加大,越來越多的變量系數(shù)會(huì)被壓縮為0,而那些在Lambda比較大時(shí)仍然擁有非零系數(shù)的變量就是越重要的解釋變量[12-13]。本文選取平均***誤差(MAE)作為評(píng)價(jià)指標(biāo),通過交叉驗(yàn)證得到**優(yōu)Lambda值,模型MAE與Lambda之間的關(guān)系如圖1所示。圖1中左側(cè)虛線是**佳Lambda取值(065)。我們始終站在用戶的角度思考問題,用的互動(dòng)策略打破常規(guī),幫助用戶尋找簡(jiǎn)單的解決方案。

如何使用數(shù)據(jù)挖掘來判斷足球隊(duì)中關(guān)鍵人物的角色,即球星。團(tuán)隊(duì)合作是許多人類活動(dòng)的基本方面,從商業(yè)到藝術(shù),從體育到科學(xué)。近的研究表明,團(tuán)隊(duì)合作對(duì)于前沿科學(xué)研究至關(guān)重要,但人們對(duì)此知之甚少。團(tuán)隊(duì)合作如何激發(fā)更大的創(chuàng)造力。事實(shí)上,對(duì)于很多團(tuán)隊(duì)行動(dòng)來說,并沒有一個(gè)準(zhǔn)確的方法來計(jì)算如何在玩家之間分配信任。在數(shù)學(xué)中,極坐標(biāo)系是一個(gè)二維坐標(biāo)系。在這個(gè)坐標(biāo)系中的任何位置都可以用夾角和與原極點(diǎn)的距離來表示。極坐標(biāo)用于的領(lǐng)域,包括數(shù)學(xué)、物理、工程、導(dǎo)航、航空和機(jī)器人技術(shù)。當(dāng)兩點(diǎn)之間的關(guān)系很容易用它們之間的角度和距離表示時(shí),極坐標(biāo)系特別有用,而在平面直角坐標(biāo)系中,這種關(guān)系只能用三角函數(shù)表示。對(duì)于許多類型的曲線,極坐標(biāo)方程是簡(jiǎn)單的表達(dá)形式,甚至對(duì)于某些曲線,也只能用極坐標(biāo)方程表示。分析結(jié)果以圖文并茂的報(bào)告和數(shù)據(jù)表格呈現(xiàn),包含豐富的細(xì)節(jié),并支持在線分享、保存、打印和下載。時(shí)間序列數(shù)據(jù)挖掘類型

非常好用! 專業(yè)級(jí)分析,您身邊的智能算法**。通用數(shù)據(jù)挖掘工具

隨著智能制造技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘技術(shù)在智能制造行業(yè)中的應(yīng)用也越來越。數(shù)據(jù)挖掘可以通過分析生產(chǎn)過程中的傳感器數(shù)據(jù)、設(shè)備運(yùn)行數(shù)據(jù)、產(chǎn)品質(zhì)量數(shù)據(jù)等數(shù)據(jù),為制造企業(yè)提供更加的生產(chǎn)調(diào)度和質(zhì)量控制。同時(shí),數(shù)據(jù)挖掘還可以幫助制造企業(yè)進(jìn)行產(chǎn)品設(shè)計(jì)和市場(chǎng)分析,為企業(yè)提供更加科學(xué)的產(chǎn)品開發(fā)和市場(chǎng)營(yíng)銷策略。數(shù)據(jù)挖掘在電商行業(yè)的應(yīng)用,隨著電商行業(yè)的發(fā)展,數(shù)據(jù)挖掘技術(shù)被廣泛應(yīng)用于電商平臺(tái)。通過對(duì)用戶行為、購買記錄等數(shù)據(jù)進(jìn)行分析,可以幫助電商平臺(tái)更好地了解用戶需求,提高銷售轉(zhuǎn)化率,優(yōu)化商品推薦等。同時(shí),數(shù)據(jù)挖掘還可以幫助電商平臺(tái)預(yù)測(cè)銷售趨勢(shì),優(yōu)化庫存管理,提高運(yùn)營(yíng)效率。通用數(shù)據(jù)挖掘工具

上海暖榕智能科技有限責(zé)任公司成立于2019-12-11,同時(shí)啟動(dòng)了以暖榕,暖榕智能為主的暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)業(yè)布局。暖榕智能經(jīng)營(yíng)業(yè)績(jī)遍布國(guó)內(nèi)諸多地區(qū)地區(qū),業(yè)務(wù)布局涵蓋暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等板塊。隨著我們的業(yè)務(wù)不斷擴(kuò)展,從暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等到眾多其他領(lǐng)域,已經(jīng)逐步成長(zhǎng)為一個(gè)獨(dú)特,且具有活力與創(chuàng)新的企業(yè)。暖榕智能始終保持在數(shù)碼、電腦領(lǐng)域優(yōu)先的前提下,不斷優(yōu)化業(yè)務(wù)結(jié)構(gòu)。在暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等領(lǐng)域承攬了一大批高精尖項(xiàng)目,積極為更多數(shù)碼、電腦企業(yè)提供服務(wù)。