經(jīng)濟(jì)數(shù)據(jù)挖掘智能獲客

來(lái)源: 發(fā)布時(shí)間:2023-06-11

    然后圍繞選取的初始關(guān)鍵詞綜合使用了長(zhǎng)尾關(guān)鍵詞拓展法、站長(zhǎng)工具以及網(wǎng)頁(yè)相關(guān)搜索推薦等方法拓展出數(shù)量更多的關(guān)鍵詞,剔除重復(fù)或者有歧義的關(guān)鍵詞后建立了一個(gè)包含276個(gè)關(guān)鍵詞的初始詞庫(kù)。關(guān)鍵詞搜索指數(shù)相關(guān)性分析首先利用網(wǎng)絡(luò)爬蟲工具獲取初始詞庫(kù)中各關(guān)鍵詞相同時(shí)間段內(nèi)月度搜索數(shù)據(jù),針對(duì)關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行預(yù)處理(剔除缺失數(shù)據(jù)超過(guò)6個(gè)月或者搜索指數(shù)過(guò)低的關(guān)鍵詞數(shù)據(jù)),**后得到118個(gè)符合要求的關(guān)鍵詞搜索數(shù)據(jù)。但是并不是每個(gè)關(guān)鍵詞搜索數(shù)據(jù)都與實(shí)際銷量存在相關(guān)關(guān)系。所以本文首先應(yīng)用傳統(tǒng)相關(guān)性分析方法通過(guò)判定各個(gè)關(guān)鍵詞搜索數(shù)據(jù)與大眾品牌汽車銷量的Spearman秩相關(guān)系數(shù),篩選出相關(guān)系數(shù)大于(***相關(guān)),共計(jì)37個(gè)。然后采用時(shí)差相關(guān)分析確定上一步篩選出的關(guān)鍵詞搜索指數(shù)與大眾品牌汽車銷量的時(shí)滯階數(shù)均處于滯后1~3階的范圍(網(wǎng)絡(luò)搜索行為是一種即時(shí)性行為,而購(gòu)買汽車作為重大經(jīng)濟(jì)決策,消費(fèi)者一般都會(huì)在做出購(gòu)買決策前幾個(gè)月就開始搜索相關(guān)的信息)。現(xiàn)有研究針對(duì)相關(guān)性分析結(jié)果一般有兩種處理方法:***種是直接選取相關(guān)性**高的作為***的解釋變量;第二種是利用指數(shù)合成方法將合成后的關(guān)鍵指數(shù)作為解釋變量。兩種方法難免都會(huì)造成有效信息的損失。全憑經(jīng)驗(yàn)、直覺和眼光,怎能在智能時(shí)代贏得未來(lái)?經(jīng)濟(jì)數(shù)據(jù)挖掘智能獲客

數(shù)據(jù)挖掘是一種通過(guò)分析大量數(shù)據(jù)來(lái)發(fā)現(xiàn)隱藏在其中的有價(jià)值信息的技術(shù)。它可以幫助企業(yè)更好地了解市場(chǎng)趨勢(shì)、消費(fèi)者需求和競(jìng)爭(zhēng)對(duì)手動(dòng)態(tài),從而制定更加科學(xué)的商業(yè)決策。我們的公司是一家專注于數(shù)據(jù)挖掘領(lǐng)域的企業(yè),我們的重心產(chǎn)品就是基于數(shù)據(jù)挖掘技術(shù)的解決方案。我們的產(chǎn)品可以幫助企業(yè)從海量數(shù)據(jù)中提取有價(jià)值的信息,為企業(yè)的決策提供有力支持。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點(diǎn):1.高效性:我們的產(chǎn)品可以快速地處理大量數(shù)據(jù),提取出有價(jià)值的信息,幫助企業(yè)更快地做出決策。2.性:我們的產(chǎn)品可以根據(jù)企業(yè)的需求進(jìn)行定制,提供的數(shù)據(jù)分析結(jié)果,幫助企業(yè)更好地了解市場(chǎng)和消費(fèi)者。3.可靠性:我們的產(chǎn)品采用先進(jìn)的數(shù)據(jù)挖掘算法和技術(shù),保證數(shù)據(jù)分析結(jié)果的準(zhǔn)確性和可靠性。4.易用性:我們的產(chǎn)品界面簡(jiǎn)潔明了,操作簡(jiǎn)單易懂,即使是沒有數(shù)據(jù)挖掘經(jīng)驗(yàn)的用戶也可以輕松上手。個(gè)性化數(shù)據(jù)挖掘報(bào)表使用智能擬合引擎引擎擬合影響因素并預(yù)測(cè)未知。

    某外賣app需要根據(jù)早中晚人們的用餐習(xí)慣來(lái)給用戶推送不一樣的食物或者優(yōu)惠券,這樣推薦不同的食物更符合用戶的習(xí)慣。另外根據(jù)地點(diǎn)的上下文說(shuō)的是,如果你在辦公室用某外賣app點(diǎn)一份外賣,那么推薦給你的外賣餐廳是要離你較近的,而不是推送十公里以外的餐廳。基于內(nèi)容的推薦與熱度算法我們要知道個(gè)性化推薦一般會(huì)有兩種通用的方法,包括基于內(nèi)容的個(gè)性化推薦,和基于用戶行為的個(gè)性化推薦?;谟脩粜袨榈耐扑],會(huì)有基于物品的協(xié)同過(guò)濾(Item-CF)與基于用戶的協(xié)同過(guò)濾(User-CF)兩種。而協(xié)同過(guò)濾往往都是要建立在大量的用戶行為數(shù)據(jù)的基礎(chǔ)上,在產(chǎn)品發(fā)布之初,沒有那么大量的數(shù)據(jù)。所以這個(gè)時(shí)候就要依靠基于內(nèi)容的推薦或者熱度算法?;趦?nèi)容的推薦一般來(lái)說(shuō),基于內(nèi)容的推薦的意思是,會(huì)在產(chǎn)品初期打造階段引入**的知識(shí)來(lái)建立起商品的信息知識(shí)庫(kù),建立商品之間的相關(guān)度。比如,汽車之家的所有的車型,包括了汽車的各種性能參數(shù);電商網(wǎng)站中的女裝也包括了各種規(guī)格。在內(nèi)容的推薦過(guò)程中,只需要利用用戶當(dāng)時(shí)的上下文情況:例如用戶正在看一個(gè)20萬(wàn)左右的大眾轎車,系統(tǒng)就會(huì)根據(jù)這輛車的性能參數(shù),來(lái)找到另外幾輛與這輛車相似的車來(lái)推薦給用戶。一般來(lái)說(shuō)。

數(shù)據(jù)挖掘在能源行業(yè)的應(yīng)用:能源行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過(guò)對(duì)能源消耗記錄、能源生產(chǎn)效率等數(shù)據(jù)進(jìn)行分析,可以幫助能源企業(yè)更好地了解能源消耗情況,提高能源利用效率,優(yōu)化能源生產(chǎn)方案等。同時(shí),數(shù)據(jù)挖掘還可以幫助能源企業(yè)預(yù)測(cè)市場(chǎng)需求,提高能源供應(yīng)管理能力。數(shù)據(jù)挖掘在社交媒體行業(yè)的應(yīng)用:社交媒體行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過(guò)對(duì)用戶行為、社交關(guān)系等數(shù)據(jù)進(jìn)行分析,可以幫助社交媒體平臺(tái)更好地了解用戶需求,提高用戶體驗(yàn),優(yōu)化廣告投放等。同時(shí),數(shù)據(jù)挖掘還可以幫助社交媒體平臺(tái)預(yù)測(cè)用戶趨勢(shì),提高社交媒體管理能力。分析結(jié)果以圖文并茂的報(bào)告和數(shù)據(jù)表格呈現(xiàn),包含豐富的細(xì)節(jié),并支持在線分享、保存、打印和下載。

組合與推薦引擎:您來(lái)自零售、餐飲、電商或服務(wù)業(yè);您想把單品搭配成套餐,或想在顧客點(diǎn)了一些東西或把商品加到購(gòu)物車后,再向他推薦一些別的。使用組合與推薦引擎,幫您深度挖掘商品的內(nèi)部關(guān)系!只需片刻,即可處理多達(dá)200萬(wàn)條數(shù)據(jù),對(duì)高達(dá)50000個(gè)訂單和5000個(gè)商品進(jìn)行分析計(jì)算,并將圖文并茂的報(bào)告呈現(xiàn)眼前。從組合的角度重新發(fā)現(xiàn)你的商品,探索商品之間的內(nèi)部聯(lián)系。您從事餐飲、零售、電商、服務(wù)...(比如您是一家快餐店店主),您想把一些單品搭配成組合或套餐放到團(tuán)購(gòu)網(wǎng)站上引流,或者讓用戶買起來(lái)更方便...(比如您將豆?jié){和南瓜餅拼在一起,并起了個(gè)好聽的名字叫“早餐超值6元享”),或者,您只是想在客戶買了一些東西后,再給他推薦一些別的...(比如您的顧客點(diǎn)了杯豆?jié){,您覺得他應(yīng)該還需要一份小籠包)。用所見即所知代替困惑:只需上傳一份訂單明細(xì),剩下的就交給我們吧!基于“暖榕敏捷數(shù)據(jù)挖掘系統(tǒng)——組合推薦引擎”,迅速建立產(chǎn)品之間的關(guān)聯(lián)性,讓你從組合的視角重新認(rèn)識(shí)你的產(chǎn)品。建立一個(gè)洞察,只需三步? 智能化定參和優(yōu)化,無(wú)需懂技術(shù)? 流式計(jì)算集群,結(jié)果立等可取?。傳統(tǒng)零售數(shù)據(jù)挖掘團(tuán)隊(duì)

使用組合與推薦引擎,幫您深度挖掘商品的內(nèi)部關(guān)系!經(jīng)濟(jì)數(shù)據(jù)挖掘智能獲客

數(shù)據(jù)挖掘依賴于(1)基于統(tǒng)計(jì)的抽樣、估計(jì)和假設(shè)檢驗(yàn)的思想;(2)基于人工智能、模式識(shí)別和機(jī)器學(xué)習(xí)的搜索算法、建模方法和學(xué)習(xí)理論。數(shù)據(jù)挖掘也迅速吸收了其他領(lǐng)域的思想,包括優(yōu)化、演化計(jì)算、信息論、信號(hào)處理、可視化和信息檢索。其他一些領(lǐng)域也發(fā)揮著重要的支撐作用。特別是,數(shù)據(jù)庫(kù)系統(tǒng)必須提供高效的存儲(chǔ)、索引和查詢處理支持。在處理海量數(shù)據(jù)集時(shí),基于高性能計(jì)算的方法通常很重要。分布式技術(shù)還可以幫助處理大量數(shù)據(jù),并且在無(wú)法集中處理數(shù)據(jù)時(shí)更為重要。數(shù)據(jù)挖掘和OLAP的區(qū)別在于,數(shù)據(jù)挖掘不是用來(lái)檢查預(yù)期的模型是否正確,而是在數(shù)據(jù)庫(kù)中查找模型本身。基本上,這是一個(gè)歸納過(guò)程。例如,使用數(shù)據(jù)挖掘工具的分析師想要找到導(dǎo)致違約的風(fēng)險(xiǎn)因素。數(shù)據(jù)挖掘工具可以幫助他發(fā)現(xiàn)高負(fù)債和低收入的影響因素,甚至可以發(fā)現(xiàn)一些分析師從未想過(guò)或嘗試過(guò)的其他因素,例如年齡。經(jīng)濟(jì)數(shù)據(jù)挖掘智能獲客

上海暖榕智能科技有限責(zé)任公司成立于2019-12-11,同時(shí)啟動(dòng)了以暖榕,暖榕智能為主的暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)業(yè)布局。是具有一定實(shí)力的數(shù)碼、電腦企業(yè)之一,主要提供暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等領(lǐng)域內(nèi)的產(chǎn)品或服務(wù)。隨著我們的業(yè)務(wù)不斷擴(kuò)展,從暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等到眾多其他領(lǐng)域,已經(jīng)逐步成長(zhǎng)為一個(gè)獨(dú)特,且具有活力與創(chuàng)新的企業(yè)。上海暖榕智能科技有限責(zé)任公司業(yè)務(wù)范圍涉及人工智能理論與算法軟件開發(fā),大數(shù)據(jù)服務(wù),軟件即服務(wù)(SaaS),數(shù)據(jù)分析與挖掘整體解決方案,經(jīng)營(yíng)性互聯(lián)網(wǎng)文化信息服務(wù),信息系統(tǒng)集成和物聯(lián)網(wǎng)技術(shù)服務(wù),信息技術(shù)咨詢服務(wù),社會(huì)經(jīng)濟(jì)咨詢【依法須經(jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營(yíng)活動(dòng)。】等多個(gè)環(huán)節(jié),在國(guó)內(nèi)數(shù)碼、電腦行業(yè)擁有綜合優(yōu)勢(shì)。在暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等領(lǐng)域完成了眾多可靠項(xiàng)目。