咨詢(xún)數(shù)據(jù)挖掘費(fèi)用

來(lái)源: 發(fā)布時(shí)間:2023-05-31

    以“大眾”為例展示各模型測(cè)試集的預(yù)測(cè)值與實(shí)際值對(duì)比如圖2所示。其中可以看出LASOO線(xiàn)性回歸模型(圖(b))及支持向量回歸模型(圖(c))的預(yù)測(cè)精度明顯優(yōu)于A(yíng)RIMA模型(圖(a)),ARIMA模型雖然能夠預(yù)測(cè)銷(xiāo)量的基本趨勢(shì),但整體預(yù)測(cè)效果比較差,而且以上三種模型的峰值敏感度都較低,即對(duì)峰值的預(yù)測(cè)誤差均比較大。通過(guò)與隨機(jī)森林模型(圖(d))進(jìn)行對(duì)比,可以清晰直觀(guān)地看出,隨機(jī)森林模型與其他模型相比在峰值預(yù)測(cè)準(zhǔn)確度上有明顯差異,顯然隨機(jī)森林模型對(duì)于峰值和整體預(yù)測(cè)的結(jié)果都更精確。由此可以得出結(jié)論,針對(duì)汽車(chē)品牌粒度的月度銷(xiāo)量預(yù)測(cè)問(wèn)題,建立基于網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征的隨機(jī)森林模型是一種切實(shí)可行的方案。3結(jié)論本文以品牌汽車(chē)銷(xiāo)量為研究對(duì)象,通過(guò)關(guān)鍵詞的選取及拓展,將相關(guān)性分析與基于LASSO的特征選擇相結(jié)合,**終篩選出針對(duì)不同品牌汽車(chē)的網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征,在解決多重共線(xiàn)性及減少過(guò)擬合的基礎(chǔ)上保留**有效的數(shù)據(jù),然后分別建立了傳統(tǒng)時(shí)間序列模型及三種機(jī)器學(xué)習(xí)模型,通過(guò)對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析,發(fā)現(xiàn)機(jī)器學(xué)習(xí)模型的預(yù)測(cè)效果均有***優(yōu)勢(shì),其中隨機(jī)森林模型預(yù)測(cè)性能**優(yōu)。數(shù)據(jù)挖掘還可以用于發(fā)現(xiàn)行為、異常情況和風(fēng)險(xiǎn)預(yù)警等,幫助企業(yè)保護(hù)自身利益。咨詢(xún)數(shù)據(jù)挖掘費(fèi)用

數(shù)據(jù)挖掘是一項(xiàng)重要的技術(shù),它可以幫助企業(yè)從海量數(shù)據(jù)中挖掘出有價(jià)值的信息,為企業(yè)決策提供支持。我們公司是一家專(zhuān)注于數(shù)據(jù)挖掘的企業(yè),我們的重點(diǎn)產(chǎn)品就是數(shù)據(jù)挖掘。我們的數(shù)據(jù)挖掘技術(shù)可以幫助企業(yè)快速、準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì),從而為企業(yè)提供決策支持。我們的數(shù)據(jù)挖掘技術(shù)可以應(yīng)用于各個(gè)領(lǐng)域,包括金融、醫(yī)療、教育、電商等等。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點(diǎn):1.高效性:我們的數(shù)據(jù)挖掘技術(shù)可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析的效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì),為企業(yè)提供準(zhǔn)確的決策支持。3.靈活性:我們的數(shù)據(jù)挖掘技術(shù)可以根據(jù)不同的需求進(jìn)行定制化開(kāi)發(fā),滿(mǎn)足企業(yè)不同的數(shù)據(jù)分析需求。4.可視化:我們的數(shù)據(jù)挖掘產(chǎn)品可以將數(shù)據(jù)分析結(jié)果以圖表等形式進(jìn)行展示,讓企業(yè)更直觀(guān)地了解數(shù)據(jù)分析結(jié)果。工業(yè)數(shù)據(jù)挖掘團(tuán)隊(duì)技術(shù)咨詢(xún)**團(tuán)隊(duì),豐富行業(yè)經(jīng)驗(yàn),強(qiáng)大技術(shù)能力,為用戶(hù)量身定制,滿(mǎn)足用戶(hù)個(gè)性化數(shù)據(jù)建模與挖掘需求!

絕大多數(shù)數(shù)據(jù)挖掘項(xiàng)目都是領(lǐng)域特定的,因此數(shù)據(jù)挖掘人員不應(yīng)在自己的世界里埋頭于YY算法模型,而應(yīng)該與領(lǐng)域**進(jìn)行交流和協(xié)作,正確解讀項(xiàng)目需求。這種協(xié)作應(yīng)貫穿項(xiàng)目的整個(gè)生命周期。在大公司中,數(shù)據(jù)采集主要是從其他業(yè)務(wù)系統(tǒng)的數(shù)據(jù)庫(kù)中獲取。很多時(shí)候我們收集數(shù)據(jù),在這種情況下,我們必須了解數(shù)據(jù)采樣過(guò)程如何影響采樣分布,以確保評(píng)分模型參考中用于訓(xùn)練和測(cè)試模型的數(shù)據(jù)來(lái)自相同的分布。大多數(shù)時(shí)候使用數(shù)據(jù)挖掘模型來(lái)輔助決策,人們顯然不會(huì)根據(jù)“黑盒模型”做出決策。如何針對(duì)特定環(huán)境對(duì)模型做出合理的解釋也是一項(xiàng)非常重要的工作。由于數(shù)據(jù)挖掘理論的范圍很廣,它實(shí)際上起源于許多學(xué)科。例如,部分建模主要來(lái)自統(tǒng)計(jì)學(xué)和機(jī)器學(xué)習(xí)。統(tǒng)計(jì)方法是基于模型的,通常建立可以產(chǎn)生數(shù)據(jù)的模型;機(jī)器學(xué)習(xí)是基于算法的,它允許計(jì)算機(jī)通過(guò)執(zhí)行算法來(lái)發(fā)現(xiàn)知識(shí)。

    采用R語(yǔ)言針對(duì)“大眾”、“本田”、“奧迪”品牌汽車(chē)的銷(xiāo)量預(yù)測(cè)建立了支持向量回歸模型及隨機(jī)森林模型,按照MAE值**小原則應(yīng)用網(wǎng)格搜索法(GridSearch)進(jìn)行模型參數(shù)調(diào)優(yōu),同時(shí)針對(duì)三個(gè)品牌建立傳統(tǒng)的時(shí)間序列預(yù)測(cè)模型——自回歸積分滑動(dòng)平均模型(ARIMA)進(jìn)行綜合比較分析。為了有效和直觀(guān)地衡量不同模型的預(yù)測(cè)能力,本文選取均方根誤差(RMSE)、平均***百分比誤差(MAPE)兩個(gè)指標(biāo)來(lái)評(píng)估預(yù)測(cè)結(jié)果,各模型測(cè)試集預(yù)測(cè)結(jié)果如表2所示。從表2可以看出,無(wú)論從RMSE還是MAPE來(lái)說(shuō),機(jī)器學(xué)習(xí)模型的預(yù)測(cè)效果均有***優(yōu)勢(shì),相比傳統(tǒng)的時(shí)間序列ARIMA模型大幅度提高了預(yù)測(cè)準(zhǔn)確度,而且從MAPE指標(biāo)結(jié)果來(lái)看,ARIMA模型對(duì)于不同品牌汽車(chē)銷(xiāo)量預(yù)測(cè)差異非常大(奧迪比本田高了近15%),機(jī)器學(xué)習(xí)模型預(yù)測(cè)性能比較穩(wěn)定。所有模型中性能**優(yōu)的是隨機(jī)森林模型,預(yù)測(cè)平均誤差為,比ARIMA模型降低了,相比文獻(xiàn)[15]、[16]對(duì)大眾及奧迪相同品牌汽車(chē)月度銷(xiāo)量預(yù)測(cè)的MAPE分別降低了,預(yù)測(cè)精度有了***提升。從本質(zhì)上分析,網(wǎng)絡(luò)搜索數(shù)據(jù)與對(duì)應(yīng)品牌汽車(chē)銷(xiāo)量之間的關(guān)系并不是單純的線(xiàn)性關(guān)系,其中非線(xiàn)性關(guān)系的程度應(yīng)該大于線(xiàn)性關(guān)系的程度,因而兩種非線(xiàn)性機(jī)器學(xué)習(xí)模型的預(yù)測(cè)更為精確?;谥悄軘M合引擎引擎擬合影響因素并預(yù)測(cè)未知。

描述性的,無(wú)監(jiān)督的學(xué)習(xí),描述性分析是指分析具有多種屬性的數(shù)據(jù)集,找出潛在的模式并進(jìn)行分類(lèi)。描述性分析是一個(gè)無(wú)監(jiān)督的學(xué)習(xí)過(guò)程。與監(jiān)督學(xué)習(xí)不同,無(wú)監(jiān)督學(xué)習(xí)算法沒(méi)有參考指標(biāo),需要結(jié)合業(yè)務(wù)經(jīng)驗(yàn)來(lái)判斷數(shù)據(jù)分類(lèi)是否正確。無(wú)監(jiān)督學(xué)習(xí)耗時(shí)長(zhǎng),對(duì)建模者的專(zhuān)業(yè)素質(zhì)要求較高。在數(shù)據(jù)挖掘建模中,定義標(biāo)簽是主題視角。比如營(yíng)銷(xiāo)預(yù)測(cè)模型中客戶(hù)是否回復(fù),是建模者自己設(shè)定的規(guī)則。這個(gè)規(guī)則可能是在收到營(yíng)銷(xiāo)消息后的三天內(nèi)注冊(cè)一個(gè)賬號(hào)并生成訂單。細(xì)致和充分的測(cè)試,保證可靠性;個(gè)性化數(shù)據(jù)挖掘SaaS

為每個(gè)客戶(hù)定制個(gè)性化的產(chǎn)品推薦序列,提高成交率并優(yōu)化客戶(hù)體驗(yàn)。咨詢(xún)數(shù)據(jù)挖掘費(fèi)用

線(xiàn)性回歸與歸因引擎:您想知道一個(gè)指標(biāo),如銷(xiāo)量、利潤(rùn)、活躍度,受哪些因素影響?哪些有正面作用?哪些無(wú)效或有反作用?因素變化后指標(biāo)如何變化?可靠性如何?使用線(xiàn)性回歸與歸因引擎探索原因并預(yù)測(cè)未知。只需片刻,即可處理多達(dá)200萬(wàn)條數(shù)據(jù),并將圖文并茂的報(bào)告呈現(xiàn)眼前。制定面向未來(lái)的策略,提高勝算。您想知道一個(gè)指標(biāo),如銷(xiāo)量、利潤(rùn)、活躍度,受哪些因素影響?哪些有正面作用?哪些無(wú)效或有反作用?因素變化后指標(biāo)如何變化?可靠性如何?停止猜想,開(kāi)始洞察?;谙冗M(jìn)的“暖榕敏捷數(shù)據(jù)挖掘系統(tǒng)——線(xiàn)性回歸與歸因分析引擎”:?自動(dòng)建模技術(shù)建立線(xiàn)性回歸或廣義回歸模型,并根據(jù)預(yù)設(shè)的因素預(yù)測(cè)未知的取值;?自動(dòng)進(jìn)行歸因分析,了解哪些因素產(chǎn)生了哪些影響,以及這些影響的可信度;?基于共線(xiàn)性分析,挖掘不同因素之間的關(guān)聯(lián)性和耦合性。咨詢(xún)數(shù)據(jù)挖掘費(fèi)用

上海暖榕智能科技有限責(zé)任公司主要經(jīng)營(yíng)范圍是數(shù)碼、電腦,擁有一支專(zhuān)業(yè)技術(shù)團(tuán)隊(duì)和良好的市場(chǎng)口碑。公司業(yè)務(wù)涵蓋暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等,價(jià)格合理,品質(zhì)有保證。公司將不斷增強(qiáng)企業(yè)重點(diǎn)競(jìng)爭(zhēng)力,努力學(xué)習(xí)行業(yè)知識(shí),遵守行業(yè)規(guī)范,植根于數(shù)碼、電腦行業(yè)的發(fā)展。暖榕智能秉承“客戶(hù)為尊、服務(wù)為榮、創(chuàng)意為先、技術(shù)為實(shí)”的經(jīng)營(yíng)理念,全力打造公司的重點(diǎn)競(jìng)爭(zhēng)力。