同濟(jì)生物董事長(zhǎng)作為嘉賓現(xiàn)場(chǎng)致辭宇航人2025年新春年會(huì)!
同濟(jì)生物受邀走訪安惠益家,為居家養(yǎng)老平臺(tái)提供膳食營(yíng)養(yǎng)解決方案
同濟(jì)生物首腦銀杏膠囊研發(fā)人吳健博士再獲新身份認(rèn)證!
吾谷媽媽攜手同濟(jì)生物醫(yī)藥研究院院長(zhǎng)直播首秀!
心中有信仰?生命有力量|吾谷媽媽聯(lián)合同濟(jì)生物用愛(ài)呵護(hù)每一個(gè)家
同濟(jì)生物參加2024飲食與健康論壇暨營(yíng)養(yǎng)與疾病防治學(xué)術(shù)會(huì)!
淺談大健康行業(yè)口服**未來(lái)新方向!
同濟(jì)科普丨神經(jīng)酸#腦健康功能食品解決方案
揭開(kāi)鱷魚(yú)的神秘面紗-同濟(jì)生物&利得盈養(yǎng)鱷魚(yú)小分子肽固體飲料
同濟(jì)多湃全球發(fā)布會(huì)圓滿成功!
所以對(duì)人的要求就是要熟悉挖礦的方法和工具,或者至少知道在什么平臺(tái)上使用什么工具,解決什么需求。簡(jiǎn)單的說(shuō)就是負(fù)責(zé)拿到需求,然后拿到結(jié)果。大多數(shù)公司的數(shù)據(jù)挖掘工程師都比較被動(dòng)。比如BI讓你說(shuō)“我要獲取10年的銷(xiāo)售,需要知道每年的銷(xiāo)售情況和訂單情況”。這時(shí)候你需要對(duì)數(shù)據(jù)進(jìn)行采集、處理和整理、展示結(jié)果等,主要集中在算法上。數(shù)據(jù)挖掘就是通過(guò)數(shù)據(jù)的表象發(fā)現(xiàn)隱藏的蛛絲馬跡,找出看似無(wú)關(guān)事物背后隱藏的規(guī)律和聯(lián)系,并以此來(lái)理解或預(yù)測(cè)未知事物。很多人認(rèn)為數(shù)據(jù)挖掘需要掌握復(fù)雜高級(jí)的算法和技術(shù)開(kāi)發(fā)才能擅長(zhǎng)數(shù)據(jù)挖掘和分析,其實(shí)不然。在企業(yè)的實(shí)際運(yùn)作中,比較好的大數(shù)據(jù)挖掘工程師應(yīng)該是熟悉和了解業(yè)務(wù)的人?;谥悄軘M合引擎引擎擬合影響因素并預(yù)測(cè)未知。通用數(shù)據(jù)挖掘方法
數(shù)據(jù)挖掘和OLAP具有一定的互補(bǔ)性。在根據(jù)數(shù)據(jù)挖掘的結(jié)果采取行動(dòng)之前,您可以檢查此類(lèi)行動(dòng)對(duì)公司的影響。還有其他方法可以使用OLAP工具。這可以幫助您探索數(shù)據(jù),找出哪些變量對(duì)解決問(wèn)題更重要,并找出異常值和相互影響的變量。這可以幫助您更好地理解您的數(shù)據(jù)并加快知識(shí)發(fā)現(xiàn)過(guò)程。數(shù)據(jù)挖掘并不是要取代傳統(tǒng)的統(tǒng)計(jì)分析方法。相反,它是統(tǒng)計(jì)分析方法的延伸和延續(xù)。大多數(shù)統(tǒng)計(jì)分析方法都建立在完善的數(shù)學(xué)理論和高超的技巧之上,預(yù)測(cè)精度尚可,但用戶要求很高。隨著計(jì)算機(jī)計(jì)算能力的不斷增強(qiáng),我們只能利用計(jì)算機(jī)強(qiáng)大的計(jì)算能力,用相對(duì)簡(jiǎn)單固定的方法來(lái)完成同樣的功能。數(shù)據(jù)挖掘是人工智能統(tǒng)計(jì)和技術(shù)的一種應(yīng)用,它把這些先進(jìn)復(fù)雜的技術(shù)綜合起來(lái),使人們不必自己掌握這些技術(shù)就可以執(zhí)行相同的功能,而更專(zhuān)注于自己要解決的問(wèn)題。時(shí)間序列數(shù)據(jù)挖掘組件貼近業(yè)務(wù)實(shí)際、聚焦業(yè)務(wù)痛點(diǎn),專(zhuān)注于難、痛、愁、急的問(wèn)題。
隨著智能制造技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘技術(shù)在智能制造行業(yè)中的應(yīng)用也越來(lái)越。數(shù)據(jù)挖掘可以通過(guò)分析生產(chǎn)過(guò)程中的傳感器數(shù)據(jù)、設(shè)備運(yùn)行數(shù)據(jù)、產(chǎn)品質(zhì)量數(shù)據(jù)等數(shù)據(jù),為制造企業(yè)提供更加的生產(chǎn)調(diào)度和質(zhì)量控制。同時(shí),數(shù)據(jù)挖掘還可以幫助制造企業(yè)進(jìn)行產(chǎn)品設(shè)計(jì)和市場(chǎng)分析,為企業(yè)提供更加科學(xué)的產(chǎn)品開(kāi)發(fā)和市場(chǎng)營(yíng)銷(xiāo)策略。數(shù)據(jù)挖掘在電商行業(yè)的應(yīng)用,隨著電商行業(yè)的發(fā)展,數(shù)據(jù)挖掘技術(shù)被廣泛應(yīng)用于電商平臺(tái)。通過(guò)對(duì)用戶行為、購(gòu)買(mǎi)記錄等數(shù)據(jù)進(jìn)行分析,可以幫助電商平臺(tái)更好地了解用戶需求,提高銷(xiāo)售轉(zhuǎn)化率,優(yōu)化商品推薦等。同時(shí),數(shù)據(jù)挖掘還可以幫助電商平臺(tái)預(yù)測(cè)銷(xiāo)售趨勢(shì),優(yōu)化庫(kù)存管理,提高運(yùn)營(yíng)效率。
某外賣(mài)app需要根據(jù)早中晚人們的用餐習(xí)慣來(lái)給用戶推送不一樣的食物或者優(yōu)惠券,這樣推薦不同的食物更符合用戶的習(xí)慣。另外根據(jù)地點(diǎn)的上下文說(shuō)的是,如果你在辦公室用某外賣(mài)app點(diǎn)一份外賣(mài),那么推薦給你的外賣(mài)餐廳是要離你較近的,而不是推送十公里以外的餐廳?;趦?nèi)容的推薦與熱度算法我們要知道個(gè)性化推薦一般會(huì)有兩種通用的方法,包括基于內(nèi)容的個(gè)性化推薦,和基于用戶行為的個(gè)性化推薦。基于用戶行為的推薦,會(huì)有基于物品的協(xié)同過(guò)濾(Item-CF)與基于用戶的協(xié)同過(guò)濾(User-CF)兩種。而協(xié)同過(guò)濾往往都是要建立在大量的用戶行為數(shù)據(jù)的基礎(chǔ)上,在產(chǎn)品發(fā)布之初,沒(méi)有那么大量的數(shù)據(jù)。所以這個(gè)時(shí)候就要依靠基于內(nèi)容的推薦或者熱度算法?;趦?nèi)容的推薦一般來(lái)說(shuō),基于內(nèi)容的推薦的意思是,會(huì)在產(chǎn)品初期打造階段引入**的知識(shí)來(lái)建立起商品的信息知識(shí)庫(kù),建立商品之間的相關(guān)度。比如,汽車(chē)之家的所有的車(chē)型,包括了汽車(chē)的各種性能參數(shù);電商網(wǎng)站中的女裝也包括了各種規(guī)格。在內(nèi)容的推薦過(guò)程中,只需要利用用戶當(dāng)時(shí)的上下文情況:例如用戶正在看一個(gè)20萬(wàn)左右的大眾轎車(chē),系統(tǒng)就會(huì)根據(jù)這輛車(chē)的性能參數(shù),來(lái)找到另外幾輛與這輛車(chē)相似的車(chē)來(lái)推薦給用戶。一般來(lái)說(shuō)。通過(guò)預(yù)先獲知客戶的營(yíng)銷(xiāo)成功概率,優(yōu)化營(yíng)銷(xiāo)策略,提高準(zhǔn)確度并降低成本。
注:這里的CF=collaborativefiltering而這兩種類(lèi)型的協(xié)同過(guò)濾都是要基于用戶行為來(lái)進(jìn)行。而除了協(xié)同過(guò)濾之外,還有基于內(nèi)容的推薦、基于知識(shí)的推薦、混合推薦等方式。物以類(lèi)聚,人以群分。這句話很好地解釋了協(xié)同過(guò)濾這種方法的思想。亞馬遜網(wǎng)站上對(duì)圖書(shū)的推薦-基于Item-CF前一陣參加pmcaff的人工智能產(chǎn)品經(jīng)理的活動(dòng),主講人香港中文大學(xué)的湯曉鷗教授(目前人工智能視覺(jué)方面的前列**)說(shuō),目前機(jī)器視覺(jué)領(lǐng)域可以通過(guò)社交網(wǎng)絡(luò)照片或者個(gè)人相冊(cè)中的圖片的學(xué)習(xí),可以做到預(yù)測(cè)個(gè)人征信。與誰(shuí)的合影,在什么地方拍照都成為了機(jī)器預(yù)測(cè)個(gè)人特征的判斷因素。這也是利用了“人以群分"的常識(shí),只是加上了高大上的機(jī)器視覺(jué)技術(shù)而已。機(jī)器學(xué)習(xí)與個(gè)性化推薦的關(guān)系什么是機(jī)器學(xué)習(xí)?《集群智慧編程》這本書(shū)里是這么解釋的:機(jī)器學(xué)習(xí)是人工智能領(lǐng)域中與算法相關(guān)的一個(gè)子域,它允許計(jì)算機(jī)不斷地進(jìn)行學(xué)習(xí)。大多數(shù)情況下,這相當(dāng)于將一組數(shù)據(jù)傳遞給算法,并由算法推斷出與這些數(shù)據(jù)的屬性相關(guān)的信息-借助這些信息,算法就能夠預(yù)測(cè)出未來(lái)有可能出現(xiàn)的其他數(shù)據(jù)。這種預(yù)測(cè)是完全有可能的,因?yàn)閹缀跛蟹请S機(jī)數(shù)據(jù)中,都會(huì)包含這樣或那樣的“模式(patterns)”。基于潛客識(shí)別引擎,幫您發(fā)現(xiàn)哪些人具有更高的營(yíng)銷(xiāo)成功率。通用數(shù)據(jù)挖掘價(jià)格
我們知道掘金的過(guò)程很辛苦,我們的方案可以幫您又快又好的解決問(wèn)題。通用數(shù)據(jù)挖掘方法
數(shù)據(jù)挖掘在能源行業(yè)的應(yīng)用:能源行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過(guò)對(duì)能源消耗記錄、能源生產(chǎn)效率等數(shù)據(jù)進(jìn)行分析,可以幫助能源企業(yè)更好地了解能源消耗情況,提高能源利用效率,優(yōu)化能源生產(chǎn)方案等。同時(shí),數(shù)據(jù)挖掘還可以幫助能源企業(yè)預(yù)測(cè)市場(chǎng)需求,提高能源供應(yīng)管理能力。數(shù)據(jù)挖掘在社交媒體行業(yè)的應(yīng)用:社交媒體行業(yè)是數(shù)據(jù)挖掘技術(shù)的重要應(yīng)用領(lǐng)域之一。通過(guò)對(duì)用戶行為、社交關(guān)系等數(shù)據(jù)進(jìn)行分析,可以幫助社交媒體平臺(tái)更好地了解用戶需求,提高用戶體驗(yàn),優(yōu)化廣告投放等。同時(shí),數(shù)據(jù)挖掘還可以幫助社交媒體平臺(tái)預(yù)測(cè)用戶趨勢(shì),提高社交媒體管理能力。通用數(shù)據(jù)挖掘方法
上海暖榕智能科技有限責(zé)任公司成立于2019-12-11,是一家專(zhuān)注于暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案的****,公司位于聯(lián)航路1588弄(浦江鎮(zhèn)481街坊6/2丘)1幢技術(shù)中心主樓108室。公司經(jīng)常與行業(yè)內(nèi)技術(shù)**交流學(xué)習(xí),研發(fā)出更好的產(chǎn)品給用戶使用。公司主要經(jīng)營(yíng)暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等產(chǎn)品,我們依托高素質(zhì)的技術(shù)人員和銷(xiāo)售隊(duì)伍,本著誠(chéng)信經(jīng)營(yíng)、理解客戶需求為經(jīng)營(yíng)原則,公司通過(guò)良好的信譽(yù)和周到的售前、售后服務(wù),贏得用戶的信賴和支持。暖榕,暖榕智能?chē)?yán)格按照行業(yè)標(biāo)準(zhǔn)進(jìn)行生產(chǎn)研發(fā),產(chǎn)品在按照行業(yè)標(biāo)準(zhǔn)測(cè)試完成后,通過(guò)質(zhì)檢部門(mén)檢測(cè)后推出。我們通過(guò)全新的管理模式和周到的服務(wù),用心服務(wù)于客戶。上海暖榕智能科技有限責(zé)任公司以誠(chéng)信為原則,以安全、便利為基礎(chǔ),以優(yōu)惠價(jià)格為暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案的客戶提供貼心服務(wù),努力贏得客戶的認(rèn)可和支持,歡迎新老客戶來(lái)我們公司參觀。