同濟(jì)生物董事長(zhǎng)作為嘉賓現(xiàn)場(chǎng)致辭宇航人2025年新春年會(huì)!
同濟(jì)生物受邀走訪安惠益家,為居家養(yǎng)老平臺(tái)提供膳食營(yíng)養(yǎng)解決方案
同濟(jì)生物首腦銀杏膠囊研發(fā)人吳健博士再獲新身份認(rèn)證!
吾谷媽媽攜手同濟(jì)生物醫(yī)藥研究院院長(zhǎng)直播首秀!
心中有信仰?生命有力量|吾谷媽媽聯(lián)合同濟(jì)生物用愛(ài)呵護(hù)每一個(gè)家
同濟(jì)生物參加2024飲食與健康論壇暨營(yíng)養(yǎng)與疾病防治學(xué)術(shù)會(huì)!
淺談大健康行業(yè)口服**未來(lái)新方向!
同濟(jì)科普丨神經(jīng)酸#腦健康功能食品解決方案
揭開(kāi)鱷魚(yú)的神秘面紗-同濟(jì)生物&利得盈養(yǎng)鱷魚(yú)小分子肽固體飲料
同濟(jì)多湃全球發(fā)布會(huì)圓滿(mǎn)成功!
但是若保留所有的解釋變量,解釋變量之間也可能存在多重共線性,所以本文在相關(guān)性分析基礎(chǔ)上應(yīng)用LASSO算法來(lái)進(jìn)一步分析與選取特征[10]?;贚ASSO的特征選取在高維數(shù)據(jù)變量選擇方法的研究領(lǐng)域中,Tibshirani在1996年提出普通線性模型下的LeastAbsoluteShrinkageandSelectionOperate(LASSO)算法,LASSO算法就是在損失函數(shù)后面加上懲罰項(xiàng)(即L1正則項(xiàng)),L1正則項(xiàng)可以約束方程的稀疏性,這種稀疏性即可應(yīng)用于特征的選擇,這種方法與傳統(tǒng)的算法相比優(yōu)點(diǎn)在于可以在進(jìn)行連續(xù)的變量選擇的同時(shí)進(jìn)行模型參數(shù)估計(jì)[11]。而且LASSO算法可以有效解決解釋變量多重共線性的問(wèn)題,使得后續(xù)建立的模型擁有穩(wěn)定的性能。針對(duì)上一節(jié)相關(guān)性分析結(jié)果,采用R語(yǔ)言中的glmnet包實(shí)現(xiàn)的LASSO算法對(duì)關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行分析與特征選取。通過(guò)分析模型的Lambda解路徑圖可以發(fā)現(xiàn),隨著懲罰的力度加大,越來(lái)越多的變量系數(shù)會(huì)被壓縮為0,而那些在Lambda比較大時(shí)仍然擁有非零系數(shù)的變量就是越重要的解釋變量[12-13]。本文選取平均***誤差(MAE)作為評(píng)價(jià)指標(biāo),通過(guò)交叉驗(yàn)證得到**優(yōu)Lambda值,模型MAE與Lambda之間的關(guān)系如圖1所示。圖1中左側(cè)虛線是**佳Lambda取值(065)。易用:只需簡(jiǎn)單幾步拖拽和點(diǎn)擊,即可獲得高質(zhì)量的分析結(jié)果!數(shù)據(jù)挖掘工具
隨著智能制造技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘技術(shù)在智能制造行業(yè)中的應(yīng)用也越來(lái)越。數(shù)據(jù)挖掘可以通過(guò)分析生產(chǎn)過(guò)程中的傳感器數(shù)據(jù)、設(shè)備運(yùn)行數(shù)據(jù)、產(chǎn)品質(zhì)量數(shù)據(jù)等數(shù)據(jù),為制造企業(yè)提供更加的生產(chǎn)調(diào)度和質(zhì)量控制。同時(shí),數(shù)據(jù)挖掘還可以幫助制造企業(yè)進(jìn)行產(chǎn)品設(shè)計(jì)和市場(chǎng)分析,為企業(yè)提供更加科學(xué)的產(chǎn)品開(kāi)發(fā)和市場(chǎng)營(yíng)銷(xiāo)策略。數(shù)據(jù)挖掘在電商行業(yè)的應(yīng)用,隨著電商行業(yè)的發(fā)展,數(shù)據(jù)挖掘技術(shù)被廣泛應(yīng)用于電商平臺(tái)。通過(guò)對(duì)用戶(hù)行為、購(gòu)買(mǎi)記錄等數(shù)據(jù)進(jìn)行分析,可以幫助電商平臺(tái)更好地了解用戶(hù)需求,提高銷(xiāo)售轉(zhuǎn)化率,優(yōu)化商品推薦等。同時(shí),數(shù)據(jù)挖掘還可以幫助電商平臺(tái)預(yù)測(cè)銷(xiāo)售趨勢(shì),優(yōu)化庫(kù)存管理,提高運(yùn)營(yíng)效率。經(jīng)濟(jì)數(shù)據(jù)挖掘潛在客戶(hù)挖掘快速:分布式計(jì)算引擎+自研高效調(diào)度技術(shù),只需數(shù)分鐘即可獲得結(jié)果!
描述性的,無(wú)監(jiān)督的學(xué)習(xí),描述性分析是指分析具有多種屬性的數(shù)據(jù)集,找出潛在的模式并進(jìn)行分類(lèi)。描述性分析是一個(gè)無(wú)監(jiān)督的學(xué)習(xí)過(guò)程。與監(jiān)督學(xué)習(xí)不同,無(wú)監(jiān)督學(xué)習(xí)算法沒(méi)有參考指標(biāo),需要結(jié)合業(yè)務(wù)經(jīng)驗(yàn)來(lái)判斷數(shù)據(jù)分類(lèi)是否正確。無(wú)監(jiān)督學(xué)習(xí)耗時(shí)長(zhǎng),對(duì)建模者的專(zhuān)業(yè)素質(zhì)要求較高。在數(shù)據(jù)挖掘建模中,定義標(biāo)簽是主題視角。比如營(yíng)銷(xiāo)預(yù)測(cè)模型中客戶(hù)是否回復(fù),是建模者自己設(shè)定的規(guī)則。這個(gè)規(guī)則可能是在收到營(yíng)銷(xiāo)消息后的三天內(nèi)注冊(cè)一個(gè)賬號(hào)并生成訂單。
1.準(zhǔn)備數(shù)據(jù):這是構(gòu)建模型之前的之后一個(gè)數(shù)據(jù)準(zhǔn)備步驟。這一步可以分為四個(gè)部分:變量的選擇、記錄的選擇、新變量的創(chuàng)建、變量的轉(zhuǎn)換。2.建立模型:模型構(gòu)建是一個(gè)迭代過(guò)程。您需要仔細(xì)研究各種模型,以確定哪種模型對(duì)解決特定業(yè)務(wù)問(wèn)題有用。部分?jǐn)?shù)據(jù)用于構(gòu)建模型,其余數(shù)據(jù)用于測(cè)試和驗(yàn)證生成的模型。有時(shí)還有第三組數(shù)據(jù),稱(chēng)為驗(yàn)證集,因?yàn)闇y(cè)試聚會(huì)受到模型特性的影響,需要一個(gè)單獨(dú)的數(shù)據(jù)集來(lái)檢驗(yàn)?zāi)P偷臏?zhǔn)確性。要訓(xùn)練和測(cè)試數(shù)據(jù)挖掘模型,您需要將數(shù)據(jù)至少分成兩部分,一部分用于訓(xùn)練模型,另一部分用于測(cè)試模型。3.評(píng)價(jià)模型:建立模型后,需要對(duì)得到的結(jié)果進(jìn)行評(píng)價(jià),解釋模型的價(jià)值。測(cè)試集的準(zhǔn)確性只對(duì)用于構(gòu)建模型的數(shù)據(jù)有影響。在實(shí)際應(yīng)用中,有必要進(jìn)一步了解錯(cuò)誤的類(lèi)型及其相關(guān)成本。經(jīng)驗(yàn)表明,高效的模型不一定是正確的模型。造成這種情況的直接原因是模型中內(nèi)置了各種假設(shè),因此直接在現(xiàn)實(shí)世界中測(cè)試模型非常重要。先小面積應(yīng)用,得到一些測(cè)試數(shù)據(jù),滿(mǎn)意后再大面積推廣。 彈性成本:按需使用,不需運(yùn)維、不養(yǎng)團(tuán)隊(duì)、節(jié)省高額咨詢(xún)費(fèi)!
這些模式的存在使機(jī)器得以據(jù)此進(jìn)行歸納。為了實(shí)現(xiàn)歸納,機(jī)器會(huì)利用它所認(rèn)定的出現(xiàn)數(shù)據(jù)中的重要特征對(duì)數(shù)據(jù)進(jìn)行“訓(xùn)練”,并借此得到一個(gè)模型。機(jī)器學(xué)習(xí)本質(zhì)上是從數(shù)據(jù)中構(gòu)建模型來(lái)進(jìn)行“數(shù)據(jù)預(yù)測(cè)”或者“下決定”的事兒,而個(gè)性化推薦系統(tǒng)的本質(zhì),也是預(yù)測(cè)用戶(hù)可能感興趣的事兒。機(jī)器學(xué)習(xí)可以用來(lái)做個(gè)性化推薦系統(tǒng),也可以做其他類(lèi)型的預(yù)測(cè),比如金融**偵測(cè)、安防、**市場(chǎng)分析、垃圾email過(guò)濾等等。這張圖很好地解釋了機(jī)器學(xué)習(xí)的工作過(guò)程。機(jī)器學(xué)習(xí)分為無(wú)監(jiān)督學(xué)習(xí)和有監(jiān)督學(xué)習(xí)兩種,也有延伸出增強(qiáng)學(xué)習(xí)和半監(jiān)督學(xué)習(xí)的方法。Hadoop與Mahout那些推薦算法這里不再贅述,但是大數(shù)據(jù)技術(shù)方面的基礎(chǔ)知識(shí),作為小白還是需要要有所了解。眾所周知,推薦系統(tǒng)的數(shù)據(jù)處理往往是海量的,所以處理這些數(shù)據(jù)的時(shí)候要用到像Hadoop這樣的分布式處理軟件框架。Hadoop是一個(gè)能夠?qū)Υ罅繑?shù)據(jù)進(jìn)行分布式處理的軟件框架。Hadoop以一種可靠、高效、可伸縮的方式進(jìn)行數(shù)據(jù)處理。Hadoop是一個(gè)生造出來(lái)的詞,而Mahout中文意思就是象夫,可以看出,如果把大數(shù)據(jù)比作一只大象的話(huà),那mahout就是就是指揮大數(shù)據(jù)進(jìn)行運(yùn)算的指揮官。Mahout是ApacheSoftwareFoundation(ASF)旗下的一個(gè)開(kāi)源項(xiàng)目。掌握營(yíng)銷(xiāo)轉(zhuǎn)化的細(xì)節(jié),如轉(zhuǎn)化鏈路數(shù)量和長(zhǎng)短,發(fā)現(xiàn)業(yè)務(wù)發(fā)展中的堵點(diǎn)和瓶頸。網(wǎng)店數(shù)據(jù)挖掘哪幾種
使用線性回歸與歸因引擎探索原因并預(yù)測(cè)未知。數(shù)據(jù)挖掘工具
也是很多創(chuàng)業(yè)公司遇到的較為棘手的問(wèn)題。在早期團(tuán)隊(duì)資金有限的情況下,如何更好地提升用戶(hù)體驗(yàn)?如果給用戶(hù)的推薦千篇一律、沒(méi)有亮點(diǎn),會(huì)使得用戶(hù)在一開(kāi)始就對(duì)產(chǎn)品失去了興趣,放棄使用。所以冷啟動(dòng)的問(wèn)題需要上線新產(chǎn)品認(rèn)真地對(duì)待和研究。在產(chǎn)品剛剛上線,新用戶(hù)到來(lái)的時(shí)候,如果沒(méi)有他在應(yīng)用上的行為數(shù)據(jù),也無(wú)法預(yù)測(cè)其興趣。另外,當(dāng)新商品上架也會(huì)遇到冷啟動(dòng)的問(wèn)題,沒(méi)有收集到任何一個(gè)用戶(hù)對(duì)其瀏覽,點(diǎn)擊或者購(gòu)買(mǎi)的行為,也無(wú)從判斷將商品如何進(jìn)行推薦。所以在冷啟動(dòng)的時(shí)候要同時(shí)考慮用戶(hù)的冷啟動(dòng)和物品的冷啟動(dòng)。我總結(jié)了并延伸了項(xiàng)亮在《推薦系統(tǒng)實(shí)踐》中的一些方法,可以參考:a.提供熱門(mén)內(nèi)容,類(lèi)似剛才所介紹的熱度算法,將熱門(mén)的內(nèi)容優(yōu)先推給用戶(hù)。b.利用用戶(hù)注冊(cè)信息,可以收集人口統(tǒng)計(jì)學(xué)的一些特征,如性別、國(guó)籍、學(xué)歷、居住地來(lái)預(yù)測(cè)用戶(hù)的偏好,當(dāng)然在極度強(qiáng)調(diào)用戶(hù)體驗(yàn)的***,注冊(cè)過(guò)程的過(guò)于繁瑣也會(huì)影響到用戶(hù)的轉(zhuǎn)化率,所以另外一種方式更加簡(jiǎn)單且有效,即利用用戶(hù)社交網(wǎng)絡(luò)賬號(hào)授權(quán)登陸,導(dǎo)入社交網(wǎng)站上的好友信息或者一些行為數(shù)據(jù)。c.在用戶(hù)登錄時(shí)收集對(duì)物品的反饋,了解用戶(hù)興趣,推送相似的物品。d.在一開(kāi)始引入**知識(shí),建立知識(shí)庫(kù)、物品相關(guān)度表。數(shù)據(jù)挖掘工具
上海暖榕智能科技有限責(zé)任公司是一家集研發(fā)、制造、銷(xiāo)售為一體的****,公司位于聯(lián)航路1588弄(浦江鎮(zhèn)481街坊6/2丘)1幢技術(shù)中心主樓108室,成立于2019-12-11。公司秉承著技術(shù)研發(fā)、客戶(hù)優(yōu)先的原則,為國(guó)內(nèi)暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案的產(chǎn)品發(fā)展添磚加瓦。暖榕,暖榕智能目前推出了暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等多款產(chǎn)品,已經(jīng)和行業(yè)內(nèi)多家企業(yè)建立合作伙伴關(guān)系,目前產(chǎn)品已經(jīng)應(yīng)用于多個(gè)領(lǐng)域。我們堅(jiān)持技術(shù)創(chuàng)新,把握市場(chǎng)關(guān)鍵需求,以重心技術(shù)能力,助力數(shù)碼、電腦發(fā)展。上海暖榕智能科技有限責(zé)任公司每年將部分收入投入到暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品開(kāi)發(fā)工作中,也為公司的技術(shù)創(chuàng)新和人材培養(yǎng)起到了很好的推動(dòng)作用。公司在長(zhǎng)期的生產(chǎn)運(yùn)營(yíng)中形成了一套完善的科技激勵(lì)政策,以激勵(lì)在技術(shù)研發(fā)、產(chǎn)品改進(jìn)等。上海暖榕智能科技有限責(zé)任公司嚴(yán)格規(guī)范暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品管理流程,確保公司產(chǎn)品質(zhì)量的可控可靠。公司擁有銷(xiāo)售/售后服務(wù)團(tuán)隊(duì),分工明細(xì),服務(wù)貼心,為廣大用戶(hù)提供滿(mǎn)意的服務(wù)。